
Meta-Learning: A PAC-Bayesian Perspective

Klemens Niklas Lothar Dieter Flöge

Department of Applied Mathematics

and Theoretical Physics

University of Cambridge

This Part III Essay is submitted for the degree of

Master of Advanced Study

May 4, 2023

Abstract

Meta-learning, also referred to as ”learning to learn,” involves leveraging past learning experiences to

enhance the efficiency and efficacy of future learning. This approach is crucial as it enables machines

to generalise and adapt better to tasks and transfer knowledge from related ones. Currently, the field

is predominantly empirical, with researchers frequently proposing and comparing new algorithms and

techniques on benchmark datasets. However, there is a lack of a comprehensive framework or theory

that underpins all of these methods. Introducing PAC-Bayesian bounds for meta-learners results in a

new class of algorithms known as PACOH that inhibit probabilistic performance guarantees. These

algorithms not only demonstrate state-of-the-art performance on benchmark datasets but also enable

the derivation of optimisation-based meta-learners such as MAML and REPTILE. PAC-Bayesian

Meta-Learning is a potent framework that not only facilitates the development of new approaches

but also places existing algorithms in context and within a theoretical framework. Additionally,

the essay will demonstrate the performance and characteristics of the presented algorithms through

numerical experiments.

Declaration

I declare that this essay is work done as part of the Part III Examination. I have read and

understood both the University’s statement on the Definition of Academic Misconduct and the

Faculty Guidelines on Plagiarism and Academic Misconduct and have abided by them. This essay

is the result of my own work, and except where explicitly stated otherwise, only includes material

undertaken since the publication of the list of essay titles, and includes nothing which was performed

in collaboration. No part of this essay has been submitted, or is concurrently being submitted, for

any degree, diploma or similar qualification at any university or similar institution.

Part III Essay

Klemens Flöge

May 4, 2023

1

Summary

1 Introduction 3

1.1 Common Concerns and Approaches to Meta-Learning 4

1.2 Optimisation-Based Meta-Learning . 5

2 Meta Learning in the PAC-Bayesian Framework 9

2.1 Introduction to PAC-Bayesian Bounds . 9

2.2 PAC-Bayesian Meta-Learning Bounds . 13

2.2.1 Proof of Theorem 2.3 . 18

2.2.2 Proof of Corollary 2.4 . 28

2.2.3 Proof of Proposition 2.5 . 29

2.3 Optimisation-Based Meta-Learning Revisited in the PAC-Bayesian Framework . . . 30

2.3.1 Derivation of MAML and REPTILE . 31

3 The PACOH Algorithm 35

3.1 Approximating the PACOH . 35

3.2 Meta-Learning Gaussian Process Priors . 37

3.3 Meta-Learning Bayesian Neural Network Priors . 41

3.4 Discussion . 45

4 Numerical Experiments 47

5 Conclusion 57

A Appendix 62

A.1 Relevant Definitions and Inequalities . 62

A.2 PACOH Algorithm Details . 63

A.3 Log-Sum-Exp Operator . 63

2

1 Introduction

Meta-learning is a modern field of machine learning and is concerned with teaching machines ’learning

to learn’. Modern Deep Learning techniques perform very well on most machine learning problems

if provided with huge amount of training data. Unfortunately, in most applications of interest

training data is not abundant but rather quite limited. As will be shown with the example of

few-shot-learning, meta-learning attempts to leverage information from data originating in different

but related tasks to learn the general structure of the problem and then efficiently adapt to the new

task with relatively few data samples.

Meta-learning is a behaviour which can be observed in humans. Most people including children will

be able to recognise a person in a given picture after having seen them only once or twice before on

a photo. This so called few-shot-learn is quite difficult for Neural Networks which usually require

hundreds to thousands of examples of a given class in order to configure the massive parameter space.

The intuition for meta-learning then comes from the idea that humans are only able to recognise a

given person after seeing one or two images because they had years of experience in recognising faces

in general. So adapting to a particular face is less of a challenge and only needs a few examples.

A good meta-learning algorithm should perform well on a variety of different but related tasks, such

as recognising a given person in an image. This variety could be modelled as a distribution of tasks

T called the environment, where during training a task τi = (Di,mi) ∼ T is drawn. The learner is

then presented with a dataset Si ∼ Dmi
i of mi samples drawn from the task distribution D. Given a

loss function L parameterised by θ the optimal model parameters are:

θ∗ = argmin
θ

Eτ∼T [Lθ(S)]. (1)

This is very similar to standard supervised learning however one dataset is considered as one data

sample. A dataset S contains pairs of feature vector and labels, S = {(xi, yi)}ni=1 and each label

belongs to known label set Llabel. An example of a meta-learning problem as mentioned before is

few-shot learning for regression or classification, which shall be the main focus of this essay. K-shot

N-class classification consists of classifying N different classes based on K labelled examples from

each class. An instance of this problem is depicted in the following Figure 1.

Figure 1: Example of K = 2 shot N = 3 class animal image classification problem, Zi et al. [43]

3

A task drawn from the environment consists of distinguishing between three different classes based

on two labelled examples from each class. The classes presented in Figure 1 for training task 1 are

cats, sheep and pig and in training task 2 dogs, sharks and lions. While the task 1 test set consists

of ducks, foxes and dolphins. Meta learning algorithms should not learn how to distinguish all of

these classes in general, but rather learn on how to distinguish three different classes of animals

based on two examples of each class.

The field of meta-learning is still a largely empirical research field with a myriad of different

architectures and approaches. In this essay the field will be examined through a PAC-Bayesian lens,

which gives probabilistic guarantees on the performance of certain algorithms. The main application

to keep in mind throughout this essay will be supervised few-shot-learning as introduced earlier.

PAC-Bayesian meta learning is a very elegant theory in which certain performance guarantees for

meta-learners can be proven. In Section 1 this essay will present different approaches to meta-learning.

A focus will be placed on optimisation-based algorithms as these have gained much attention in

recent years due to universality in applications, performance and ease of implementation. The main

algorithms discussed from this class are MAML and REPTILE to a lesser extent. In Section 2 general

supervised PAC-bounds will be stated. These are very useful as they provide probabilistic guarantees

on the performance of a learning algorithm. This framework will then be extended to meta-learning

following Rothfuss et al. [40]. Here theorems about the performance on general PAC-Bayesian

Meta-Learners will be stated and proven. It will also be shown how the resulting bounds can be

minimised to obtain optimal performance. Moreover, through the developed techniques it will be

possible to derive modern optimisation-based algorithms such as MAML and REPTILE which

demonstrates the universality of the PAC-Bayesian meta-learning framework. In Section 3 we will

show how the theory developed in Section 2 can be used to built a class of state of the art algorithms

called PACOH, which outperform most other meta-learning algorithms in certain tasks. In Section 4

some example applications and characteristics of the PACOH are shown.

1.1 Common Concerns and Approaches to Meta-Learning

There are a few common approaches to meta-learning using Deep Neural Networks which are model-

based, metric-based and optimisation-based. In normal supervised learning we seek a model fθ which

for an input x outputs y = fθ(x), a label for example. The model-based approach is to encode the

task information in the internal states of the network. As such mainly Recurrent-Neural-Networks

(RNNs) and variants are used in order to memorise previous tasks in this technique. In metric-based

meta-learning the learner tries to approximate the posterior distribution through a kernel density

estimation with the training dataset. So the learner attempts to find input similarities of the training

data. Optimisation based techniques usually use standard Deep Neural Networks and then adapt

then trough optimiser to best fit the meta learning paradigm. A summary of the three types of

meta-learning algorithms is given by the table below.

4

Metric-based Model-based Optimisation-based

Key idea Input similarity
Internal task

representation

Optimise for fast

adaptation

Strength Simple and effective Flexible
More robust

generalisability

How is Pθ(y|x) modelled?
∑

(xi,yi)∈Si
kθ (x,xi) yi fθ(x, S) Pgϕ(θ,SL)(y|x)

This table taken was taken from Huisman et al. [21] and provides a high-level overview of the three

deep meta-learning categories, i.e., metric-, model-, and optimisation-based techniques, and their

main strengths and weaknesses. Recall that τi is a task, Si ∼ Di the corresponding task distribution,

kθ (x,xi) a kernel function returning the similarity between the two inputs x and xi, yi are the

true labels for known inputs xi, θ are base-learner parameters, and gφ is a (learned) optimiser with

parameters φ. This is by no means meant to be a comprehensive summary of all meta-learning

techniques and is just meant to inform that these approaches exists and that this essay is not meant

to summarise the entire field of meta-learning. The interested reader is referred to review papers

such as Huisman et al. [21] or Hospedales et al. [20].

A few common concerns to keep in mind when building, analysing or deploying meta-learning

algorithms is the number of tasks needed for training, number of examples needed per task, speed of

adoption of the model.

1.2 Optimisation-Based Meta-Learning

An algorithm that has recently gained much attraction in the field is called Model-Agnostic-Meta-

Learning (MAML), with impressive performance and being very general to apply, while the core

ideas are relatively simple to understand. Optimisation-based approaches to meta-learning attempt

to learn a suitable initialisation of the model which can be fine tuned at test-time in order to fit the

task at hand. A version of this idea precedes meta-learning and can be seen in pre-trained models.

In a lot of Computer Vision or Natural Language Processing applications large models are trained

on sizeable general datasets. The resulting model configuration is then used as an initialisation for

the fine-tuning process on a much smaller dataset to adapt the pre-trained model to the desired

task. In recent years optimisation-based meta-learning techniques such as MAML and REPTILE

have gained much attraction with great performance on benchmark datasets such as Omniglot [26]

and MiniImagenet [36]. First introduced in 2017 by Finn et al. [11] MAML prepares a deep learning

model for fast adoption to new tasks through differentiating in the fine-tuning process to directly

optimise performance. As a result the learner obtains a sensible gradient-based learning algorithm

even when it receives out of sample data as pointed out by Nichol et al. [30]. The main intuition

underlying the algorithm is that some internal representation are more transferable than others.

The neural network might be able to learn a representation that is applicable to all tasks in the

environment T , as opposed to just one individual task. MAML attempts to find model parameters

that are sensitive to changes in the tasks. A change in the direction of the gradient of the loss

function then allows a small change in the model parameters lead to large improvements in the new

tasks drawn from T . Algorithm 1 implements MAML in pseudo code.

5

Figure 2: Parameter update of θ with three tasks τi during training according to the inner loop of
the MAML algorithm illustrated visually. Figure taken from Finn et al. [11].

Figure 2 illustrates how the MAML algorithm optimises the meta-learner fθ for a current represen-

tation θ ∈ Θ, for some Neural Network (NN) parameter space Θ. The MAML algorithm consists

of two main stages. Firstly the inner loop, in which the algorithm adapts the model parameters

according to one task τi ∼ T . Secondly, the meta-step uses the information from a batch of

examined tasks τ1, ..., τm to perform the meta-update. Given a loss function L and α, β as step-size

hyperparameters. For the current task τi ∼ T MAML’s inner loop will temporarily update the

current model parameters θ to θ′i. For example with one gradient update:

θ′i = θ − α∇θLτi(fθ)) = θ − αgMAML (2)

The left side of the above equation holds for one gradient update, while the gMAML = ∇θLτi(Uk
τi) is

a more general notation inspired by Nichol et al. [30]. Here Uk
τi corresponds to k gradient updates in

the inner loop. So for k = 1, gMAML = ∇θLτi(fθ)). According to Antoniou et al. [3] choosing a larger

number of inner gradient steps can sometimes lead to better performance, but usually k = 1 is chosen.

The objective for our meta learner is given by

min
θ

∑
τi∼T

Lτi(fθ′i). (3)

The meta optimisation step then uses Stochastic Gradient Descent (SGD) to update the model as

follows.

θ ← θ − β∇θ

∑
τi∼T

Lτi(fθ′i) (4)

This algorithm only assumes that the model f is parameterised by θ and that it is possible to

perform gradient descent updates. As such MAML is very general and easy to implement. The

main computational drawback of the algorithm is in the outer loop of Algorithm 1. The gradient

operator in the meta-step uses second order derivatives when backpropagating the error through

the meta-objective. As this Hessian-vector computation is quite expensive some techniques have

been proposed to reduce it. The authors themselves proposed simply to omit these higher order

derivatives, in which they reported similar performance and a 33% reduction in computational

6

Algorithm 1 Model-Agnostic Meta-Learning according to Finn et al. [11]

Require: T : distribution over tasks
Require: α, β: step size hyperparameters
1: randomly initialise θ
2: while not done do
3: Sample batch of tasks τi ∼ T
4: for all τi do
5: Evaluate ∇θLτi(fθ) with respect to K examples Compute adapted parameters with

gradient descent: θ′i = θ − α∇θLτi(fθ)) = θ − αgMAML

6: end for
7: Update θ ← θ − β∇θ

∑
τi∼T Lτi(fθ′i)

8: end while

costs, Finn et al. [11]. According to Goodfellow et al. [18] ReLU activation function in deep neural

networks are almost linear, so the second-order gradients tend to vanish, which could be a possible

explanation as to why the first-order algorithm works comparably well. Returning to the inner loop

update in equation (2), gMAML can be written more generally as

gMAML = ∇θLτi(Uk
τi(θ)) = dUk

τi∇θLτi(θ̃), where θ̃ = Uk
τi(θ). (5)

In equation (5) dUτi is the Jacobian matrix of the update operation. The update operation is equiva-

lent to the addition of a series of k gradient vectors to the original parameter θ, Uk
τi(θ) = θ+g1+...+gk.

Depending on the optimiser, such as Adam, these gradients might be rescaled however the following

conclusion remains unchanged as pointed out by Nichol et al. [30]. In First-Order MAML (FOMAML)

as introduced by Finn et al. [11] these gradients gi are all treated as constant, so the Jacobian

dUk
τi = I simply becomes the identity operation. The gradient update rule in the inner loop is then

gFOMAML = ∇θLτi(θ̃). In replacing gMAML with gFOMAML in Algorithm 1 the FOMAML algorithm

is obtained.

Another First-Order modification of the MAML algorithm was introduced by Nichol et al. [30] and

is named REPTILE. Unlike MAML this method does not unroll a computation graph or calculate

second order derivatives. Instead REPTILE performs standard SGD on each task in the given batch

and then averages the resulting connection vectors to these resulting points. The meta-update rule

of REPTILE works as follows for a batch of n tasks τ1, ..., τn,

θ ← θ + ϵ

(
1

n

n∑
i=1

Uτi(θ)− θ

)
, (6)

where Uτi(θ) denotes k steps of some optimiser such as SGD or Adam with respect to task τi. The rest

of the procedure is detailed in Algorithm 2. REPTILE was introduced as a sophisticated first-order

alternative to MAML. This algorithm finds suitable parameter configurations Uτi(θ) for each task in

the batch and then averages them for the parameter update instead of using second-order derivatives.

MAML and REPTILE will both be revisited in Section 2.3 when their gradient meta-updates

will be derived from PAC-Bayesian meta-learning bounds. Moreover, MAML will be included for

completeness in Section 4 for some qualitative numerical experiment.

7

Algorithm 2 Reptile according to Nichol et al. [30]

Require: T : distribution over tasks
Require: ϵ: step size hyperparameters
1: randomly initialise θ
2: while not done do
3: Sample batch of tasks τi ∼ T , corresponding to loss Lτi(fθ̃) on weight vectors θ̃

4: θ̃ = Uk
τi(θ), denoting k steps of SGD or Adam

5: Update θ ← θ + ϵ(θ̃ − θ)
6: end while

Other popular more Bayesian variants of the above are the Bayesian MAML (BMAML) Kim et al.

[23], Neural Processes Garnelo et al. [15] and PAC-Bayesian meta-learning algorithm (MLAP) Amit

and Meir [2]. Due to the limited scope of this work it will not be possible to go through all of them

in any detail, but the interested reader is referred to the corresponding articles.

8

2 Meta Learning in the PAC-Bayesian Framework

As previously mentioned the research field is of an empirical nature. A significant proportion of

articles published propose a new algorithm or a modification to some existing technique and then

report the performance on some benchmark dataset, such as Omniglot (Lake et al.[26]) or MiniIma-

genet (Ravi and Larochelle [36]). No unifying theoretical framework exists in which meta-learning

algorithms can be analysed. Therefore there exists a gap between the impressive empirical success

of meta-learning algorithms and theoretical explanations as to why these algorithms perform so well.

Probably Approximately Correct (PAC) Bayesian learning delivers a rigorous framework to analyse

the probabilistic generalisation of algorithms in standard supervised learning. In most settings the

number of tasks available for meta-training is small. In this environment many previously mentioned

algorithms such as MAML and REPTILE suffer from overfitting on the meta-training tasks, Yin

et al. [44]. Rothfuss et al. [40], [39] showed how PAC-Bayesian meta-learning can mitigate this

issue, as its probabilistic performance is guaranteed by Theorem 2.3. This section will first introduce

general PAC-Bayesian bounds and then apply them to the meta-learning paradigm. Theorem 2.3

which gives probabilistic guarantees on the performance of PAC-Bayesian meta-learners is stated

and proven. In addition, further mathematical statements will follow in order to optimise the

PAC-bound in Theorem 2.3. Moreover, this framework will be able derive MAML and REPTILE

from PAC-Bayesian bounds for meta-learning as demonstrated in Ding et al. [10]. As such this

section outlines the main theory and lays the groundwork for constructing efficient algorithms based

on PAC-Bayesian meta-learning which will be done in Section 3. The main contribution of the essay

in this section is the comprehensive overview of presenting the results of Rothfuss et al. [40] and

Ding et al. [10] in conjunction with each other. Moreover the proof of Theorem 2.3 which is central

to the work in [40] was flawed in its final step. This has been corrected by myself in correspondence

with the authors Rothfuss et al. and presented in this work.

2.1 Introduction to PAC-Bayesian Bounds

Firstly some notation and preliminaries will be introduced where mainly Rothfuss et al. [39] is

followed. There is a data distribution D over a domain Z from which m observations are sampled

to form the dataset S = {zi}mi=1, zi ∼ D. Where S ∼ Dm indicates the i.i.d. sampling from D. In
supervised learning, which is the main focus of this essay, a training sample zi = (xi, yi) is tuple

consisting of input features xi ∈ X and target labels yi ∈ Y. In general the learning algorithm

attempts to find a hypothesis h ∈ H with h : X → Y for some hypothesis space H, which enables

prediction for new inputs x ∼ D. For a loss function l : H×Z → R the chosen hypothesis attempts to

minimise the expected error under the data distribution, which is denoted as L(h,D) = Ez∗∼D l(h, z
∗).

Unfortunately D is unknown is practice which results in L(h,D) being intractable to compute.

However, it is possible to compute the empirical error L̂(h, S) = 1
m

∑m
i=1 l(h, zi)

1. One approach

would be to minimise L̂(h, S) and hope that the expected error is minimised. In general however this

is likely to lead to significant overfitting on the test data. The main idea of PAC-learning is to give

1Of course the data should be split in a training and test dataset with Strain, Stest ⊂ S and Strain ∪ Stest = S, but
this would make the notation more cluttered so it will not be stated explicitly again.

9

probabilistic guarantees on bounding the unknown expected loss with the empirical loss. In order to

do so one needs to essentially bound the difference between the two quantities ∆ ≥ |L(h,D)−L̂(h, S)|
with probability 1− δ, for δ ∈ (0, 1]. PAC-Bayesian bounds then have the following form.

L(h,D) ≤ L̂(h, S) + ∆ (7)

These kind of bounds then hold for some large probability 1− δ. PAC-Bayesian machine learning

attempts to find the hypothesis h ∈ H for which the RHS is as small as possible, so for which the

bound is tightest. Therefore this kind of learning is Probably Approximately Correct (PAC) which

is where the name comes from.

To extend these ideas into the Bayesian framework the predictors are randomised and the learning

attempts to find a hypothesis in the set of all probability measures on the hypothesis space, de-

noted byM(H). The two probability measures of interest are the Prior P ∈M(H) and Posterior

Q ∈M(H). In the PAC-Bayesian framework it is assumed that the Prior P is independent of the

observed data, while the Posterior may depend on it, Rothfuss et al. [39]. This stands in stark

contrast to standard Bayesian Inference which is founded on the much stronger assumption that

Prior and Posterior are closely related through Bayes’ theorem. Throughout this essay it will be

assumed that the Kullback-Leibler (KL) divergence DKL(Q||P) exists 2. Also define in analogy to

the expected error the Gibbs error for a randomised predictor Q as LGibbs(Q,D) = Eh∼Q L(h,D)
and the empirical counterpart L̂Gibbs(Q,S) = Eh∼Q L̂(h, S).

Definition 2.1 (Centred Cumulant-Generating Function) For a random Variable X with a

distribution ν and a real-valued function f the centred cumulant-generating function is defined as

Ψν,f(·) = lnEX∼ν

[
et(f(X)−E[f(X)])

]
. (8)

The Centred CGF is defined by the logarithm of the standard centred moment-generating function

and measures how much a random variable f(X), X ∼ ν deviates from its mean. Using these

preliminaries and definition it is possible to bound the Gibbs error LGibbs(Q,D) = Eh∼Q L(h,D) by
its empirical counterpart L̂Gibbs(Q,S) = Eh∼Q L̂(h, S) in the following PAC-Bayesian bound.

Theorem 2.1 (Alquier et al. [1]) Given a data distribution D, hypothesis space H, loss function
l(h, z), prior P , confidence level δ ∈ (0, 1], and β > 0 with probability at least 1 − δ over samples

S ∼ Dm, we have for all Q ∼M(H)

LGibbs(Q,D) ≤ L̂Gibbs(Q,S) +
1

β

[
DKL(Q||P) + ln

1

δ
+Ψ(β,m)

]
, (9)

with Ψ(β,m) = lnEh∼PES∼Dm exp
[
β
(
L(h,D)− L̂(h, S)

)]
To get a better feeling for the terms in this bound consider the KL-divergence term. It would be

2This is not so much of a restriction as any probability distributions p of interest could be expressed using Kernel
Density (KDE) estimation p ≈

∑
i δ(vvvi). Through the use of the delta function δ, KDE is supported over the whole

space.

10

minimised if Q = P is chosen. This is however not likely to yield good result as we assumed earlier

that the prior P is independent of the data S. As such the empirical Gibbs error L̂Gibbs(Q,S) is

likely to become very large for Q = P . The bound in (9) holds with probability 1− δ, as such the
1
β ln 1

δ can be interpreted as a penalising term for smaller confidence levels δ ∈ (0, 1].

Larger values for β would result in decreasing importance of the terms DKL(Q||P) + ln 1
δ however

centred cumulant-generating-function Ψ(β,m) scales in β. Here a choice of β =
√
m might be

convenient as it results in the decrease of the KL-complexity term DKL(P ||Q) as the number of

training samples m increases, Rothfuss et al. [39]. The Ψ(β,m) is a log moment-generating-function

measuring the deviation of the empirical and expected errors. The dependence on the expected error

L(h,D) makes it unknown in practice. If further assumptions on the loss function are made it is

however still possible to bound this term tightly. For example, if l(·) is bounded in [a, b]:

Ψ(β,m) ≤ β2(b− a)2

8m
, (10)

which can be obtained through a simple application of Hoeffding’s lemma (Lemma A.4). The

loss function l(·) is considered be sub-Gamma with variance factor s2 and sale parameter c, for

a given prior P and data distribution D if it can be described by a sub-gamma random variable

X = L(h,D) − l(h, z). For reference the definition of sub-gamma random variables have been

included in Definition A.2. The sub-Gamma assumption can be used to obtain the following

Ψ(β,m) ≤ β2s2

8m(1− cβ/m)
. (11)

Following Germain et al. [17] it can be shown in the case of linear regression fwww(xxx) = www · xxx and

squared loss l(h, z) = (y − www · xxx)2 then the loss function can be considered valid and the above

bounds hold. The sub-gaussian loss l(·) with variance factor s2 can be understood in term of a

scaling limit c+ → 0 of the above sub-gamma case. So we obtain

Ψ(β,m) ≤ β2s2

8m
. (12)

All three of these results could be derived more thoroughly, but something analogous is done in the

final part of the proof of Theorem 2.3 so we will refrain from it here. The main point to keep in

mind is that the bound in (9) can be made explicit and tight if assumptions on the loss function are

made. Moreover, these assumptions are quite general and a large class of possible loss functions

belong to it. Examples of loss functions which are bounded: Hinge loss, Logistic loss; Sub-Gamma:

Huber loss; Sub-Gaussian: Squared loss and Hinge squared loss.

In order for our learning algorithm to achieve the best performance on unseen data it should seem

natural to find a posterior distribution Q ∈M(H) for which the RHS of equation (9) is minimised.

The following lemma provides the solution to such a minimisation problem.

11

Lemma 2.2 (Cantoni [7]) Let H be the hypothesis space, g : H → R a (loss) function, Q ∈M(H)
and P ∈M(H) probability measures over H. Then for any β > 0 and h ∈ H the posterior

Q∗(h) :=
P (h)e−βg(h)

Eh∼P

[
e−βg(h)

] , (13)

is the minimising probability density of

argmin
Q∈M(H)

β Eh∼Q[g(h)] +DKL(Q||P). (14)

This probability measure is called the Gibbs Posterior Q∗. Now we would like to use this lemma to

find a Qopt which minimises the terms on the RHS in the bound (9). For this we fix P, S,m, δ and

can consider only the terms which depend on the posterior Q,

Qopt(h) = argmin
Q∈M(H)

L̂Gibbs(Q,S) +
1

β
DKL(Q||P) (15)

= argmin
Q∈M(H)

β Eh∼Q[L̂(h, S)] +DKL(Q||P) (16)

=
P (h) e−βL̂(h,S)

Eh∼P [e−βL̂(h,S)]
(17)

= Q∗(h), (18)

where Lemma 2.2 is applied in the third equality. As a result one can see that the minimising

posterior for the bound in Theorem 2.1 is the Gibbs posterior. As this Gibbs posterior will be very

important later for minimising the meta-learning PAC-Bayesian bounds we state it again in slightly

different form

Q∗(h) = P (h)e−βL̂(h,S)/Zβ(S, P), (19)

where Zβ(S, P) =
∫
H P (h)e

−βL̂(h,S)dh is a normalisation constant. As mentioned before so far we

have only assumed that the prior P is independent of the data and that the posterior Q may depend

on it. As such the posterior Q∗(h) is not necessarily connected to the prior P through Bayes Theorem

and should be thought of as a ’pseudo-posterior’ or ’generalised-posterior’. The generalised Bayesian

framework introduced so far can be described as model-free, Geudj [19]. The connection between

this generalised PAC-Bayesian framework and standard Bayes becomes clear in the probabilistic

setting if we consider the negative log-likelihood l(·) as our loss, l(h, zi) := − log p(zi|h) the optimal

Gibbs posterior, becomes

12

Q∗(h) =
P (h)e−βL̂(h,S)

Eh∼P [e−βL̂(h,S)]
(20)

=
P (h)e−β 1

m

∑m
i=1 l(h,zi)

Zβ(S, P)
(21)

=
P (h)e−β 1

m

∑m
i=1 − log p(zi|h)

Zβ(S, P)
(22)

=
P (h) (

∏m
i=1 p(zi|h))

β/m

Zβ(S, P)
(23)

=
P (h)p(S|h)β/m

Zβ(S, P)
, (24)

which coincides with the generalised Bayesian Posterior Q∗(h;S, P). Here the normalisation constant

Zβ(S, P) =
∫
H P (h)e

−βL̂(h,S)dh =
∫
H P (h)

(∏m
j=1 p(zj |h)

)β/m
dh is called the generalised marginal

likelihood. In the case the β = m the standard Bayesian posterior is recovered.

The procedure in the PAC-Bayesian framework is bounding the general error by the empirical error

and then to minimise the upper bound. In Section 2.2 these ideas will be revisited and extended to

the meta-learning setting. Moreover, the negative log-likelihood loss function l(h, zi) := − log p(zi|h)
will be used in the probabilistic model so that the Gibbs posterior Q∗(h;S, P) coincides with the

generalised Bayesian posterior.

2.2 PAC-Bayesian Meta-Learning Bounds

The aim of this section is to adapt the previously introduced theory of PAC-Bayesian bounds to the

meta-learning framework. The overview of the meta-learning framework is depicted in the following

Figure 3.

Figure 3: Overview Meta-Learning framework as presented in Rothfuss et al. [40] with environment
T , task distributions Di, target prior P , target posterior Q, dataset S, data point z = (x, y),
hyper-prior P and hyper-posterior Q

A few modifications are necessary to the preliminaries introduced at the beginning of the previous

Subsection 2.1. Since it is now of concern to learn a probability measure Q from a prior distribution

P , the base learner Q(h;S, P) denoted as a mapping Q : Zm ×M(H)→M(H) defines a density

13

over the hypothesis space H. This base-learner Q is the model that will be used during the testing

or meta-testing phase. As such this meta-learning framework aims to learn the Prior P of the

base-learner in a data-driven manner through the n statistically related tasks {τ1, ..., τn}, where
τi = (Di, Si). Here Di is the data distribution for task τi and Si ∼ Dmi

i is the dataset generated by

drawing mi samples.

All tasks share the same data-domain Z = X × Y, hypothesis space H and loss function l(θ, z). In

order to learn this prior P the meta-learner starts with a Hyper-prior P ∈M(M(H)), which is a

probability distribution over all possible priors (a probability measure over probability measures).

Over the course of training on the n datasets S1, ..., Sn, where is Si ∼ τi respectively, the meta-learner

outputs a Hyper-posterior Q ∈M(M(H)) over priors. For the target training and testing a prior

P ∼ Q is then drawn. One can one define the expected Gibbs error when sampling priors P from

the Hyper-posterior, this is known as the transfer-error.

Ltransfer(Q, T) = EP∼Q
[
E(D,m)∼T [ES∼Dm [LGibbs(Q(h;S, P),D)]]

]
(25)

Like the expected error defined in Section 2.1 the transfer-error is unknown in practice so the

empirical multi-task error is used.

L̂multi(Q, S1, ..., Sn) = EP∼Q

[
1

n

n∑
i=1

L̂Gibbs(Q(h;Si, P), Si)

]
(26)

The following Theorem shows how it is possible to bound the true transfer error L(Q, T) by the

empirical multi-task error L̂(Q, S1, ..., Sn). This Theorem will for the basis of the analysis in this

section and will provide probabilistic performance guarantees for the PACOH algorithms developed

in Section 3.

Theorem 2.3 (Rothfuss et al. [40]) Let Q : Zm × M(H) → M(H) be a base learner, P ∈
M(M(H)) some fixed hyper-prior, λ, β > 0 and λ ≥

√
n, β ≥

√
m̃. For any confidence level

δ ∈ (0, 1] the inequality

Ltransfer(Q, T) ≤ L̂multi(Q, S1, ..., Sn) +
(
1

λ
+

1

nβ

)
DKL(Q||P)

+
1

n

n∑
i=1

1

β
EP∼Q[DKL(Q(h;Si, P)||P)] + C(δ, λ, β).

(27)

holds uniformly over all hyper-posteriors Q ∈M(M(H)) with probability 1− δ. In two special cases

this term can be bounded as follows

Case I: If the loss function is bounded in [a, b] and assume that the harmonic mean m̃ = (
∑n

i=1m
−1
i)−1

is independent of the environment T , e.g. ET [mi] = ET [m] , we can bound C(δ, λ, β) by

C(δ, λ, β) ≤
(

β

8nm̃
+

λ

8n

)
(b− a)2 − 1√

n
ln δ. (28)

14

Case II: If the loss function is sub-gamma with variance factor s2I and scale parameter cI for the

data distributions Di and s
2
II , cII for the task distribution T . Furthermore if ∀i : mi = m we have

C(δ, λ, β) ≤
βs2I

2m(1− ((cIβ)/m)
+

λs2II
2n(1− ((cIIλ)/n)

− 1√
n
ln δ. (29)

Here, C(δ, λ, β) is a rather complicated expression involving CGFs and will be specified in the proof

later. It is worth noting that the form of Theorem 2.3 will be slightly different to the statement

in Rothfuss et al. [40]. The condition λ ≥
√
n, β ≥

√
m̃ was not mentioned in [40] but used in

the proof so it is included here. Furthermore, the proof in [40] contained a technical error, which

resulted in the change of C(δ, λ, β). Moreover, in Case I the assumption ET [mi] = ET [m] had to be

added and the resulting bound has a different form. If ∀i : mi = m then m̃ = m/n and the original

bound from Rothfuss et al. [40] is recovered. For Case II the assumption ∀i : mi = m had to be added.

This theorem is useful in the sense that it allows the unknown transfer error to be bounded by

the empirical multi-task error in the general meta-learning framework. It holds for any potentially

sub-optimal hyper-posterior Q and base-learner Q. In Theorem 2.3 λ, β > 0 are tunable parameters.

Following Rothfuss et al. [39] and Ding et al. [10] the following choices are reasonable:

a) In case λ ∝
√
n, β ∝

√
m̃ the bound is consistent in the sense that |Ltransfer(Q, T) −

L̂multi(Q, S1, ..., Sn)| → 0 as n,m→∞. Moreover, the generalisation gap |Ltransfer − L̂multi| is
at least O(1√

m̃
)

b) For λ ∝ n, β ∝ m̃ the generalisation gap |Ltransfer − L̂multi| is at least O(1
m̃) and the KL-

divergence terms decay faster which makes the bound more applicable in cases of smaller

samples sizes. Unfortunately however the C(δ, λ, β) term does not converge to zero, so there

remains a gap in the bound.

In order to not loose track in this section the proof of Theorem 2.3 will be deferred to the end of

the section as will the proofs of the following Corollary 2.4 and Proposition 2.5. Similar to the

procedure in the previous Section 2.1, now that the PAC bound has been stated we would like to

find the hyper-posterior Q and base-learner Q which make the bound in (27) as tight as possible.

Using this PAC-Optimal hyper-posterior Q to draw priors P for the base-learner will result (PAC)

optimal performance guarantees, with respect to Theorem 2.3. Minimising this bound means that

the meta-learner has probabilistic guarantees on the difference between training and expected error.

As such Theorem 2.3 is very useful in the way that it gives theoretical motivation and performance

guarantees on an algorithm which approximates said PAC-optimal Hyper-posterior.

The result in Theorem 2.3 holds for an arbitrary hyper-posterior Q and base-learner Q(h;S, P). In

order to achieve optimal performance guarantees we will first consider the terms on the RHS in (27)

which involve the base-learner, these are the empirical multi-task error and the empirical average of

KL-divergences of the base-learner and prior.

15

L̂multi(Q, S1, ..., Sn) +
1

n

n∑
i=1

1

β
EP∼Q[DKL(Q(h;Si, P)||P)] (30)

which can be simplified to

EP∼Q

[
1

n

n∑
i=1

Eh∼Q[L̂(h, Si)] +DKL(Q(h;Si, P)||P))

]
(31)

The summand looks very similar to the form which we have already seen in Lemma 2.2 and therefore

the Gibbs posterior Q∗(h;Si, P) is used as the base-learner. If this base learner is assumed the

previous bound (27) can be restated as the following Corollary.

Corollary 2.4 (Rothfuss et al. [40]) When using a Gibbs posterior Q∗(h;Si, P) = P (h) exp(−hL̂(h,Si))
Zβ(Si,P)

as a base-learner, under the assumptions of Theorem 2.3, we have with probability at least 1− δ

Ltransfer(Q, T) ≤ −
1

n

n∑
i=1

1

β
EP∼Q[lnZβ(Si, P)] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β), (32)

where

Zβ(Si, P) = Eh∼P [exp(−βL̂(h, Si))] =
∫
H
P (h) e−β L̂(h,Si)dh (33)

denotes the normalisation constant.

The bound in (27) holds for any potentially sub-optimal posterior Q ∈M(H)). Since Lemma 2.2

applies for any loss function in the general Bayesian setting the bound in (32) is at least as tight as

(27), so we have Ltransfer(Q, T) ≤ (32) ≤ (27). One of the main contributions of Rothfuss et al. [40]

was that the bound in (32) does not depend on Q(h;Si, P). This means in order to minimise this

bound one can directly optimise for the hyper-posterior Q, which is much easier than the previous

two-level optimisation problem of attempting to find Q and Q(h;Si, P) simultaneously in Amit and

Meir [2].

Further examining the bound presented in (32). The first term of the bound corresponds to the

expected generalised marginal log-likelihood under the hyper-posterior Q. This term provides a

measure of how well the model is likely to perform on new data. The second term, which is the

KL-divergence between the hyper-posterior Q and the hyper-prior P , acts as a meta-level regulariser

as pointed out by Rothfuss et al. [40]. It penalises the complexity of the hyperparameters and

encourages the model to favour simpler models. This is because the more complex a model is,

the more it diverges from the hyper-prior, and the higher the KL-divergence becomes. Thus, the

KL-divergence term is a way to balance the trade-off between model complexity and generalisation

performance. Moreover, as the sample size grows larger and larger, the KL-divergence term ap-

proaches zero. This is compatible with the idea that a regulariser should be relatively important if

the sample size is small, as there is less data to learn from, and should asymptotically vanish as the

sample size and model complexity increase. In other words, as the model sees more data, the regu-

larisation term becomes less important and the model can learn more complex patterns from the data.

16

To summarise, the bound presented in (32) strikes a balance between model complexity and general-

isation performance by using a regularisation term that becomes less important as the sample size

grows larger.

Now the only thing left to do is to find the optimal hyper-posterior Q∗ for which the bound in (32)

is as tight as possible. Then we will have the Gibbs posterior as an optimal base learner and this Q∗

as the optimal hyper-posterior. Building an algorithm to approximate both of these would give a

PAC-Optimal meta-learning algorithm, again with respect to the bound in Theorem 2.3. Fortunately

there exists a closed for solution for this Q∗, which is stated in the following Proposition.

Proposition 2.5 (PAC-Optimal Hyper-Posterior Rothfuss et al. [40]) Given a hyper-prior

P and datasets S1, ..., Sn, the hyper-posterior minimising the meta-learning bound in (32) is given by

Q∗(P) =
P(P) exp

(
λ

nβ+λ

∑n
i=1 lnZβ(Si, P)

)
ZII(S1, ..., Sn,P)

, (34)

with ZII(S1, ..., Sn,P) = EP∼P

[
exp

(
λ

nβ+λ

∑n
i=1 lnZβ(Si, P)

)]
The constants n, λ, β are all known. In analogy to standard Bayesian statistics the hyper-prior

P is chosen before the meta-training begins. Therefore the unknowns in equation (34) are the

generalised marginal log-likelihoods lnZβ(Si, P) and the normalising constant ZII(S1, ..., Sn,P).
There is unfortunately no hope to compute or approximate ZII(S1, ..., Sn,P) due to the difficult in-

tegral. Therefore Bayesian Inference methods such as Stein Variational Gradient Descent (SVGD) or

Variational Inference (VI) are required in order to approximate Q∗. In order to apply these methods

however we need to analytically compute or approximate the generalised marginal log-likelihoods

lnZβ(Si, P).

Theorem 2.3 states probabilistic meta-learning guarantees for any (potentially sub-optimal) base-

learner Q and hyper-posterior Q. Then for Corollary 2.4 a Gibbs posterior Q∗(h;Si, P) was assumed

as a base-learner, from which then the PAC-Optimal hyper-posterior Q∗ was derived in Proposition

2.5. Recall from Section 2.1 that the Gibbs posterior Q∗(h;Si, P) coincides with the generalised

Bayesian posterior if the negative log-likelihood loss function is used, l(h, zij) = − ln p(zij |h). There-
fore the PACOH algorithms in Section 3 will all use Bayesian models with a negative log-likelihood

loss function. The hyper-posterior Q ∈ M(M(H)) is a probability distribution over probability

distributions on the hypothesis space H. In order to use this theory to construct actual algorithms a

parametric space of priors Φ is considered. So ϕ ∈ Φ fully specifies a prior Pϕ. The hyper-posterior

Q̃ is then approximated either using K particles {Pϕ1 , ..., PϕK
} with ϕk ∈ P or through a parametric

variational family F = {Q̃v| v ∈ U} ⊂M(Φ) with its parameter vector v ∈ U . How this is done will

be the subject of Section 3.1. So far we have left unspecified how the prior Pϕ is parameterised and

how the marginal log-likelihoods lnZβ(Si, Pϕ) are computed or approximated. Both of these depend

on the Bayesian model used, in Section 3 Gaussian Processes (GPs) and Bayesian Neural Networks

(BNNs) will be considered.

17

2.2.1 Proof of Theorem 2.3

Proof. The proof of Theorem 2.3 closely follows the one presented in Rothfuss et al. [39] and will

be done in three steps. An additional quantity called the expected Multi-task error is also needed.

Since the notation of all the error functions is quite overloaded and the proof interchanges them

frequently a reminder of the previously introduced error functions is given.

• General supervised learning setting

– expected error: L(h,D) = Ez∗∼D l(h, z
∗)

– empirical error: L̂(h, S) = 1
m

∑m
i=1 l(h, zi)

• PAC-Bayesian supervised learning setting

– Gibbs error: LGibbs(Q,D) = Eh∼Q L(h,D) = Eh∼QEz∗∼D l(h, z
∗)

– empirical Gibbs error: L̂Gibbs(Q,S) = Eh∼Q L̂(h, S) = 1
mEh∼Q

∑m
i=1 l(h, zi)

• PAC-Bayesian meta-learning setting

– transfer-error Ltransfer(Q, T) = EP∼Q
[
E(D,m)∼T [ES∼Dm [LGibbs(Q(h;S, P),D)]]

]
Ltransfer(Q, T) = EP∼Q E(D,m)∼T ES∼DmEh∼Q(h;S,P)Ez∗∼D l(h, z

∗) (35)

– empirical multi-task error: L̂multi(Q, S1, ..., Sn) = EP∼Q

[
1
n

∑n
i=1 L̂Gibbs(Q(h;Si, P), Si)

]

L̂multi(Q, S1, ..., Sn) = EP∼Q

 1

n

n∑
i=1

Ehi∼Qi

1

mi

mi∑
j=1

l(hi, zij)

 (36)

– expected multi-task error: L̃multi(Q,D1, ...,Dn) = EP∼Q

[
1
n

∑n
i=1 ES∼D

mi
i
LGibbs(Q(h;S, P),Di)

]
L̃multi(Q,D1, ...,Dn) = EP∼Q

[
1

n

n∑
i=1

ES∼D
mi
i

Eh∼Q(h;S,P)Ez∗∼Di l(h, z
∗)

]
(37)

Here (35), (36) and (37) are the written out definitions. It can be seen that the expected multi-task

error is kind of an in-between the transfer and multi-task error through the replacement of E(D,m)

with the sum 1
n

∑n
i=1 and Di. As such the expected multi-task error can be thought of as the transfer

error in case the n observed tasks and their respective distributions Di have been fixed. This will

provide a useful link between the three quantities which will be seen later. The proof also heavily

relies on the following Lemma 2.6 which is invoked twice.

Lemma 2.6 (Change of Measure inequality, Picard-Weibel and Guedj [32]) let f be a ran-

dom variable taking values in a set A and let X1, ..., Xl be independent random variables, with Xk ∈ A
and distribution µk. For functions gk : A×A→ R. k = 1, ..., l, let ξk(f) = EXk∼µk

[gk(f,Xk)] denote

the expectation of gk under Xk for a fixed f ∈ A. Then for any distributions ρ, π ∈M(A) and any

λ > 0, we have that

Ef∼ρ

[
l∑

k=1

ξk(f)− gk(f,Xk)

]
≤ 1

λ

(
DKL(ρ||π) + lnEf∼π

[
eλ(

∑l
k=1 ξk(f)−gk(f,Xk))

])
. (38)

18

Some intuition as to why one might expect a Lemma of this form is that it gives an inequality for

a change in measure for a random quantity f ∼ ρ. In Bayesian learning the system changes the

distribution from a prior to a posterior, so π will correspond to the prior and ρ to the posterior.

The notation will unfortunately be slightly more cumbersome as we will require a hyper-prior and a

prior for each of the n tasks which are all changed for their respective posteriors. Lemma 2.6 will

initially be used by fixing the task distributions on the task-level. The Lemma will then be used

again on the meta-level to draw the tasks. Both of these steps will involve the expected multi-task

error, which is then eliminated by combining the two inequalities to receive the final bound. The

proof strategy is as follows:

Proof strategy for Theorem 2.3:

• Step 1 (Task specific generalisation): Lemma 2.6 is applied in order to bound the difference

of L̃multi(Q,D1, ...,Dn) and L̂multi(Q, S1, ..., Sn). This bound applies on the task level for

τ1, ..., τn.

• Step 2 (Task environment generalisation): Lemma 2.6 is used again on the meta-level to bound

Ltransfer(Q, T) and L̃multi(Q,D1, ...,Dn)

• Step 3 (Bounding residual terms): Combining the results of the first two previous steps will

result in a random product of cumulant-generating functions which will need to be bounded

again to achieve the desired result.

Step 1 (Task specific generalisation) The learning algorithm Q : Zmi×M(H)→M(H) outputs
a posterior Q(h;Si, P) over hypotheses h ∈ H given a prior P and a dataset Si ∼ Dmi

i of size mi.

For the observed tasks τi = (Di,mi), i = 1, ..., n we now wish to bound the generalisation error of

the learning algorithm.

In order to apply Lemma 2.6 to the union of all training sets S′ = ∪ni=1Si with l =
∑n

i=1mi. So each

Xk corresponds to one data point, i.e. Xk = zij and µk = Di. Further we set f = (P, h1, ..., hn) to the

tuple of one prior and n base hypotheses. So in this two-level hypothesis hi is the hypothesis for the

supervised task τi while P constitutes a hypothesis of the meta-learning problem. Correspondingly

define two-level joint-hypotheses π = (P, Pn) = P
∏n

i=1 P and ρ = (Q, Qn) = Q
∏n

i=1Qi, with

Qi = Q(h;Si, P). Lemma 2.6 allows for a change in measure for a random quantity f . In this

case initially f ∼ ρ so we have some hyper-prior P as well as a prior P for the n tasks. We define

gk(f,Xk) =
1

nmi
l(hi, zij) as the summand in the empirical multi-task error, which can be seen in

(36). Now we wish to apply Lemma 2.6 with the quantities we have just defined. We will apply the

Lemma now with γ > 0 as the constant to retrieve the following.

Ef∼(Q,Qn)

[
l∑

k=1

Ezij∼Di

[
1

nmi
l(hi, zij)

]
− 1

nmi
l(hi, zij)

]
≤ 1

γ
DKL((Q, Qn)||(P, Pn))

+
1

γ
lnEf∼(P,Pn)

[
e
γ(

∑l
k=1 Ezij∼Di

[
1

nmi
l(hi,zij)

]
− 1

nmi
l(hi,zij))

]
(39)

19

This can be stated as.

Ef∼(Q,Qn)

[
l∑

k=1

Ezij∼Di

[
1

nmi
l(hi, zij)

]]
≤ Ef∼(Q,Qn)

[
l∑

k=1

1

nmi
l(hi, zij)

]

+
1

γ
DKL((Q, Qn)||(P, Pn)) +

1

γ
lnEP∼P Eh∼P

[
e
γ(

∑l
k=1 Ezij∼Di

[
1

nmi
l(h,zij)

]
− 1

nmi
l(h,zij))

]
.

(40)

Here i = 1, ..., n is an iterator over the tasks, while j = 1, ...,mi is an iterator over the samples from

task τi. Lastly, k = 1, ..., l iterates through all the samples. Using these we will now take (40) apart

to simplify each term, starting with the LHS.

Ef∼(Q,Qn)

[
l∑

k=1

Ezij∼Di

[
1

nmi
l(hi, zij)

]]
=

1

n
Ef∼(Q,Qn)

n∑
i=1

mi∑
j=1

Ezij∼Di

1

mi
l(hi, zij)

=
1

n
Ef∼(Q,Qn)

n∑
i=1

mi∑
j=1

1

mi
Ez∗∼Di l(hi, z

∗)

=
1

n
Ef∼(Q,Qn)

n∑
i=1

mi

mi
Ez∗∼Di l(hi, z

∗)

=
1

n
EP∼QE(h1,...,hn)∼(Q1,...,Qn)

n∑
i=1

Ez∗∼Di l(hi, z
∗)

=
1

n
EP∼Q

n∑
i=1

E(h1,...,hn)∼(Q1,...,Qn)Ez∗∼Di l(hi, z
∗)

=
1

n
EP∼Q

n∑
i=1

Ehi∼Qi
Ez∗∼Di l(hi, z

∗)

= EP∼Q
1

n

n∑
i=1

ES∼Dmi LGibbs(Q(h;S, P),Di)

= L̃multi(Q,D1, ...,Dn).

Similarly we can bound the first term in the RHS of (40).

Ef∼(Q,Qn)

[
l∑

k=1

1

nmi
l(hi, zij)

]
=

1

n
Ef∼(Q,Qn)

n∑
i=1

mi∑
j=1

1

mi
l(hi, zij)

= EP∼Q

 1

n

n∑
i=1

Ehi∼Qi

mi∑
j=1

1

mi
l(hi, zij)


= L̂multi(Q, S1, ..., Sn)

Where the definition (36) was used in the last equality.

20

1

γ
DKL((Q, Qn)||(P, Pn)) =

1

γ
EP∼Q

[
Eh∼Qi

[
ln
Q(P)

∏n
i=1Qi(h)

P(P)
∏n

i=1 Pi(h)

]]
=

1

γ
EP∼Q

[
ln
Q(P)
P(P)

]
+

n∑
i=1

EP∼Q

[
Eh∼Qi

[
ln
Qi(h)

Pi(h)

]]

=
1

γ
DKL(Q||P) +

1

γ

n∑
i=1

EP∼Q [DKL(Qi||P)]

In the last term on the RHS of (40) it is possible to simplify the term in the exponent as follows

γ

(
l∑

k=1

Ezij∼Di

[
1

nmi
l(h, zij)

]
− 1

nmi
l(h, zij)

)
=
γ

n

(
n∑

k=1

L(h,Di)− L̂(h, Si)

)

Where the definitions of expected and empirical error were used. Combining all of these four

simplifications into the bound (40) we obtain

L̃multi(Q,D1, ...,Dn) ≤ L̂multi(Q, S1, ..., Sn) +
1

γ
DKL(Q||P)

+
1

γ

n∑
i=1

EP∼Q [DKL(Qi||P)] +
1

γ
lnEf∼(P,Pn)

[
e

γ
n(

∑n
k=1 L(h,Di)−L̂(h,Si))

]
︸ ︷︷ ︸

ΓI(γ)

(41)

The bound in (41) bounds the difference between the expected and empirical multi-task error. This

completes the first step of the proof and we will return to this bound in step 3.

Step 2 (Task environment generalisation After bounding the difference between the expected

and empirical multi-task error in Step 1 we now wish to bound the difference between the expected

multi-task and transfer error in order to combine both results later. In this step Lemma 2.6 is applied

again but on the meta-level. As such, the tasks are the random variables with Xk ∼ τi, l = n and

µk ∼ τ . In the meta-level the learner updates the hyper-prior to the hyper-posterior over the course

of the learning process. Therefore we set ρ = Q, π = P, f = P and gk(f,Xk) =
1
nLGibbs(Qi,Di).

Through applying Lemma 2.6 with λ > 0 the following bound is obtained.

EP∼Q

[
n∑

i=1

Eτi∼T

[
1

n
LGibbs(Qi,Di)

]
− 1

n
LGibbs(Qi,Di)

]
≤ 1

λ
DKL(Q||P)

+
1

λ
lnEP∼P

[
eλ(

∑n
i=1 Eτi∼T [1nLGibbs(Qi,Di)]− 1

n
LGibbs(Qi,Di))

]
(42)

Again separating the terms on the LHS individually yields.

21

EP∼Q

[
n∑

i=1

Eτi∼T

[
1

n
LGibbs(Qi,Di)

]]
≤ EP∼Q

[
1

n

n∑
i=1

LGibbs(Qi,Di)

]
+

1

λ
DKL(Q||P)

+
1

λ
lnEP∼P

[
eλ(

∑n
i=1 Eτi∼T [1nLGibbs(Qi,Di)]− 1

n
LGibbs(Qi,Di))

]
(43)

Again simplifying the terms individually,

EP∼Q

[
n∑

i=1

Eτi∼T

[
1

n
LGibbs(Qi,Di)

]]
= EP∼Q

[
1

n

n∑
i=1

E(D,m)∼T ES∼Dm [LGibbs(Qi,Di)]

]
= EP∼Q

[n
n
E(D,m)∼T ES∼Dm [LGibbs(Qi,Di)]

]
= Ltransfer(Q, T).

Lastly the second term on the LHS is recognised as the expected multi-task error.

EP∼Q

[
1

n

n∑
i=1

LGibbs(Qi,Di)

]
= L̃multi(Q,D1, ...,Dn)

Combining these simplifications the bound in (43) becomes

Ltransfer(Q, T) ≤ L̃multi(Q,D1, ...,Dn) +
1

λ
DKL(Q||P)

+
1

λ
lnEP∼P

[
e

λ
n(

∑n
i=1 E(D,S)∼T [LGibbs(Q(h;S,P),D)]−LGibbs(Q(h;Si,P),Di))

]
︸ ︷︷ ︸

ΓII(λ)

(44)

The above equation (44) is the desired bound between the transfer and expected multi-task error

which concludes the second step of the proof.

Step 3 (Bounding the cumulant-generating functions In the final step we first combine the

results the previous two steps. We do this by using the bound on the L̃multi(Q,D1, ...,Dn) from (41)

and plugging it into the bound (44) to obtain

Ltransfer(Q, T) ≤ L̂multi(Q, S1, ..., Sn) +
(
1

γ
+

1

λ

)
DKL(Q||P)

+
1

γ

n∑
i=1

EP∼Q [DKL(Qi||P)] +
1

γ
ΓI(γ) +

1

λ
ΓII (45)

When choosing γ = nβ this bound looks quite similar to (27) that which we are trying to proof.

The only thing left to do in this final step is to bound the random quantities 1
γΓ

I(γ) + 1
λΓ

II(λ). It

is worth reminding ourselves that the randomness in ΓI(γ) is governed by the random data points

22

zij which are i.i.d. sampled from Di. The randomness in Γ(λ) is determined by the random tasks

sampled from the environment T . Throughout this step of the proof a few common inequalities

such as Jensen and Markov are used, these have been included for the sake of completeness in the

Appendix A. First we factor out
√
n from λ and γ to obtain

1

γ
ΓI(γ) +

1

λ
ΓII(λ) =

1√
n

(√
n

γ
ΓI(γ) +

√
n

λ
ΓII(λ)

)
(46)

Proceed in bounding
√
n
γ ΓI(γ) +

√
n
λ ΓII(λ) on the RHS. For this we will use Markov’s Inequality as

stated in Theorem A.1 with ϕ(t) = exp(t) as the non-nonngative and non-decreasing function and

X =
√
n
γ ΓI(γ) +

√
n
λ ΓII(λ) as a random variable.

P
(
e

√
n
γ

ΓI(γ)+
√

n
λ

ΓII(λ)
> et

)
≤

E
[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ)
]

et
(47)

Define δ = P
(
e

√
n
γ

ΓI(γ)+
√

n
λ

ΓII(λ)
> et

)
as the probability on the LHS. Now rewrite the equation as

follows

et ≤
E
[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ)
]

δ
. (48)

By construction is e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ) ≤ et with probability 1− δ. So the following bound holds with

probability 1− δ.

e

√
n
γ

ΓI(γ)+
√

n
λ

ΓII(λ) ≤
E
[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ)
]

δ
, (49)

applying logarithms and multiplying by 1√
n
results in,

1

γ
ΓI(γ) +

1

λ
ΓII(λ) ≤ 1√

n
lnE

[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ)
]
− 1√

n
ln δ, (50)

which again holds with probability 1 − δ. Next we bound the expectation term on the RHS. As

mentioned before the randomness in ΓI(γ) comes from the i.i.d. data samples zij ∼ Di. The

randomness of ΓII(λ) originates in the tasks themselves τi ∼ T . When applying Lemma 2.6 in Step

1 of the proof these task distributions D1, ...,Dn were assumed to be fixed. The following step of

bounding E
[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ)
]
was done by Rothfuss et al. [40], [39] and Ding et al. [10].

E
[
e

√
n
γ

ΓI(γ)+
√

n
λ

ΓII(λ)
]
= ED1,...,Dn

[
e

√
n
γ

ΓI(γ)
]
ET

[
e

√
n
λ

ΓII(λ)
]

(51)

The two terms were then bounded separately using Jensen’s inequality. Unfortunately this is incorrect

as the ΓI(γ) depends on the task distribution D1, ...,Dn and these depend on the sampled task

τi ∼ T . As such it is not possible to pull the first term on the RHS of (51) out of the expectation

over the environment T . As a result the proof needs to be changed from [40]. In correspondence

23

with the authors Rothfuss et al. the following adaption of the proof was developed.

Firstly, conditioning on the sigma-algebra generated the n task distributions σ(D1, ...,Dn) inside the

expectation.

E
[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ)
]
= E

[
ED1,...,Dn

[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ) | σ(D1, ...,Dn)

]]
(52)

= E
[
e

√
n
λ

ΓII(λ)ED1,...,Dn

[
e

√
n
γ

ΓI(γ) | σ(D1, ...,Dn)

]]
, (53)

where the second step was possible as the randomness in ΓII(λ) originates in the tasks themselves

τi ∼ T , so by conditioning on the tasks it just becomes a scalar and can be pulled outside of the inner

expectation. If λ ≥
√
n and γ ≥ n

√
m. The exponents

√
n/λ and

√
n/γ are smaller or equal to one.

The function ψ : R>0 → R>0 with ψ(x) = xa is concave for 0 ≤ a ≤ 1. As such we can apply Jensen

inequality (Theorem A.2) to move the inner expectation inside of the exponent in equation (53).

Moreover, for each i = 1, ..., n denote the meta-task generalisation error V II
i as the i.i.d. realisations

of the random variable E(D,S)∼T [LGibbs(Q(S, P),D)]− LGibbs(Q(h;Si, P),Di). Similarly write the

in-task generalisation error as V I
ij for i.i.d. realisations of L(hi,Di)− l(h, zij) with i = 1, ..., n and

j = 1, ...,m. These are the random terms in ΓI and ΓII .

(53) ≤ ET

[
e

√
n
λ

ΓII(λ)
(
ED1,...,Dn

[
eΓ

I(γ)
])√

n
γ

]
(54)

= ET

[(
EP

[
e

λ
n

∑n
i=1 V

II
i

])√
n
λ ·
(
EPEPED1,...,Dn

[
e

γ
nm

∑n
i=1

∑mi
j=1 V

I
ij

])√
n
γ

]
(55)

= ET

(EP

[
n∏

i=1

e
λ
n
V II
i

])√
n
λ

·

EPEPED1,...,Dn

 n∏
i=1

mi∏
j=1

e
γ

nmi
V I
ij


√
n
γ

 (56)

As the realisation V I and V II are i.i.d. we can follow the arguments by Germain et al. [17] (proof of

Corollary 4) to obtain

(53) ≤ ET

(EP

[
n∏

i=1

e
λ
n
V II
i

])√
n
λ

·

 n∏
i=1

mi∏
j=1

EPEPEDie
γ

nmi
V I
ij


√
n
γ


︸ ︷︷ ︸

Υ(λ,γ)

. (57)

Combining our initial bound at the beginning of Step 3 (45) with the bound for the cumulant

moment-generating-functions (50) results in

24

Ltransfer(Q, T) ≤ L̂multi(Q, S1, ..., Sn) +
(

1

nβ
+

1

λ

)
DKL(Q||P)

+
1

γ

n∑
i=1

EP∼Q [DKL(Qi||P)] +
1√
n
lnE

[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ)
]
− 1√

n
ln δ. (58)

Now we substitute for the product expectation term in the bound (57) and replace γ = nβ. It is

worth noting that replacing γ = nβ is not restricting β > 0 in any way.

Ltransfer(Q, T) ≤ L̂multi(Q, S1, ..., Sn) +
(

1

nβ
+

1

λ

)
DKL(Q||P)

+
1

nβ

n∑
i=1

EP∼Q [DKL(Qi||P)]

+
1√
n
lnET

(EP

[
n∏

i=1

e
λ
n
V II
i

])√
n
λ

·

 n∏
i=1

mi∏
j=1

EPEPEDie
β
m
V I
ij

 1
β
√
n

− 1√
n
ln δ

︸ ︷︷ ︸
C(δ,λ,β)

(59)

This concludes the main part of the proof. All that is left is provide the bound for C(δ, λ, β) in cases

of a bounded and sub-gamma loss functions.

Case I: bounded loss First, we bound the moment-generating function (MGF) corresponding to

ΓI(γ), if the loss function l (hi, zij) is bounded in [a, b]. Furthermore by definition E(V I
ij) = 0. We

can now apply Hoeffding’s lemma (Lemma A.4) to the moment generating function on the right of

(57).

E
[
e

√
n
γ

ΓI(γ)+
√

n
λ

ΓII(λ)
]
≤ Υ(λ, γ) (60)

= ET

(EP

[
n∏

i=1

e
λ
n
V II
i

])√
n
λ

·
(
ED1 , ...,EDn

[
eΓ

I(γ)
])√

n
γ

 (61)

= ET

(EP

[
n∏

i=1

e
λ
n
V II
i

])√
n
λ

·

 n∏
i=1

mi∏
j=1

EPEPEDie
γ

nmi
V I
ij


√
n
γ

 (62)

≤ ET

EP

[
n∏

i=1

e
λ
n
V II
i

]√n/λ
 n∏

i=1

mi∏
j=1

e
γ2(b−a)2

8n2m2
i


√
n/γ
 (63)

Simplifying further yields,

25

ET

EP

[
n∏

i=1

e
λ
n
V II
i

]√n/λ
 n∏

i=1

mi∏
j=1

e
γ2(b−a)2

8n2m2
i


√
n/γ
 = ET

EP

[
n∏

i=1

e
λ
n
V II
i

]√n/λ(n∏
i=1

e
γ2(b−a)2

8n2mi

)√
n/γ


(64)

= ET

EP

[
n∏

i=1

e
λ
n
V II
i

]√n/λ(
e

(∑n
i=1

1
mi

)
γ2(b−a)2

8n2

)√
n/γ


(65)

= ET

EP

[
n∏

i=1

e
λ
n
V II
i

]√n/λ
 e γ(b−a)2

8n3/2m̃ . (66)

With the definition of the harmonic mean m̃ =
(∑n

i=1
1
mi

)−1
. We assume here that the harmonic

mean m̃ is independent of the realisation of environment, so that ∀i : ET [mi] = ET [m]. Crucially,

the upper bound e
γ(b−a)2

8n3/2m̃ ≥ ED1 . . .ED1

[(
eΓ

I(γ)
)√

n
γ

]
no longer depends on the tasks which are

sampled from T which allows us to move it outside the expectation under T . Secondly, we follow

analogous steps to bound the MGF corresponding to ΓII(λ). Again, assuming that λ ≥
√
n, we use

Jensen’s inequality (Theorem A.2) to move the exponent outside of the outer expectation and follow

the arguments of Germain et al. [17] (Proof of Corollary 4) again to obtain

E
[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ)
]
≤ e

γ(b−a)2

8n3/2m̃

[
n∏

i=1

ET EPe
λ
n
V II
i

]√n/λ

(67)

From the boundedness of the loss together with Hoeffding’s lemma, it follows that

E
[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ)
]
≤ e

γ(b−a)2

8n3/2m̃
+

λ(b−a)2

8
√
n (68)

Finally we use Markov’s inequality and γ = nβ to obtain that with probability at least 1− δ

1

γ
ΓI(γ) +

1

λ
ΓII(λ) =

1√
n

(√
n

γ
ΥI(γ) +

√
n

λ
ΥII(λ)

)
(69)

≤ 1√
n
lnE

[
e

√
n
γ

ΥI(γ)+
√
n
λ

ΥII(λ)
]
− 1√

n
ln δ (70)

≤ 1√
n

(
γ(b− a)2

8n3/2m̃
+
λ(b− a)2

8
√
n

)
− 1√

n
ln δ (71)

=

(
β

8nm̃
+

λ

8n

)
(b− a)2 − 1√

n
ln δ (72)

(73)

Case II: sub-gamma loss First, we assume that ∀i = 1, . . . , n, the random variables V I
ij :=

L (h,Di) − l (hi, zi,j) are sub-gamma with variance factor s2I and scale parameter cI under the

26

two-level prior (P, P) and the respective data distribution Di. we also assume that the number of

samples from each task is consant ∀i : mi = m That is, their moment generating function can be

bounded by that of a Gamma distribution Gamma
(
s2I , cI

)
:

Ez∼DiEP∼PEh∼P

[
eγ(L(h,Di)−l(h,z))

]
≤ exp

(
γ2s2I

2 (1− cIγ)

)
∀γ ∈ (0, 1/cI)

Second, we assume that the random variable V II
i := E(D,S)∼T [L(Q(P, S),D)]− L (Q (P, Si) ,Di) is

sub-gamma with variance factor s2II and scale parameter cII under the hyper-prior P and the task

distribution T . That is, its moment generating function can be bounded by that of a Gamma

distribution Gamma
(
s2II, cII

)
:

E(D,S)∼T EP∼P

[
eλ (E(D,S)∼T [L(Q(P,S),D)]−L(Q(P,S),D))

]
≤ exp

(
λ2s2II

2 (1− cIIλ)

)
∀λ ∈ (0, 1/cII)

The two inequalities above can be used to effectively bound the difficult product expectation term,

which will result in a tight bound for the constant C(δ, λ, β)

E
[
e

√
n
γ

ΓI(γ)+
√
n
λ

ΓII(λ)
]
≤ Υ(λ, γ) (74)

= ET

(EP

[
n∏

i=1

e
λ
n
V II
i

])√
n
λ

·
(
ED1 , ...,EDn

[
eΓ

I(γ)
])√

n
γ

 (75)

= ET

(EP

[
n∏

i=1

e
λ
n
V II
i

])√
n
λ

·

 n∏
i=1

m∏
j=1

EPEPEDie
γ

nmi
V I
ij


√
n
γ

 (76)

≤ ET

(EP

[
n∏

i=1

e
λ
n
V II
i

])√
n
λ

·

 n∏
i=1

m∏
j=1

exp

(
(γ
nm)2s2I

2
(
1− cI γ

nm

))


√
n
γ

 (77)

= ET

(EP

[
n∏

i=1

e
λ
n
V II
i

])√
n
λ

·

exp

 nm
1

γ2

n2m2

√
n
γ s

2
I

2
(
1− cI γ

nm

)


 (78)

= ET

(EP

[
n∏

i=1

e
λ
n
V II
i

])√
n
λ

 ·(exp(γ√
nm
s2I

2
(
1− cI γ

nm

))) (79)

≤ exp

(
n(λn)

2s2II
2
(
1− cII(λn)

)√n
λ

)
·

(
exp

(γ√
nm
s2I

2
(
1− cI γ

nm

))) (80)

≤ exp

(
λs2II

2
√
n (1− (cIIλ)/n)

)
·
(
exp

(√
nβs2I

2m (1− (cIβ)/m)

))
(81)

(82)

This holds ∀γ ∈ (0, 1/cI), ∀λ ∈ (0, 1/cII) and with γ = nβ. Returning to (50) and similar to Case I:

27

1

γ
ΓI(γ) +

1

λ
ΓII(λ) =

1√
n

(√
n

γ
ΥI(γ) +

√
n

λ
ΥII(λ)

)
(83)

≤ 1√
n
lnE

[
e

√
n
γ

ΥI(γ)+
√
n
λ

ΥII(λ)
]
− 1√

n
ln δ (84)

≤ 1√
n
ln

[
exp

(
λs2II

2
√
n (1− (cIIλ)/n)

)
·
(
exp

(√
nβs2I

2m (1− cIβ/m)

))]
− 1√

n
ln δ

(85)

=
λs2II

2n (1− cII(λ/n))
+

βs2I
2m (1− (cIβ)/m)

− 1√
n
ln δ. (86)

This concludes the proof of Theorem 2.3. 2

2.2.2 Proof of Corollary 2.4

Proof. Corollary 2.4 states the PAC bound for the transfer error if the Gibbs posterior is used. In

choosing the optimal Gibbs posterior Q∗
i (h) = Q∗(h;Si, P) = P (h) exp(−hL̂(h, Si))/Zβ(Si, P) we

can rewrite the terms involving the posterior or base learner in (27) as follows.

L̂multi(Q, S1, ..., Sn) +
1

n

n∑
i=1

1

β
EP∼Q[DKL(Q

∗
i ||P)] (87)

=
1

n

n∑
i=1

(
EP∼Q Eh∼Q∗

i

[
L̂(h, Si)

]
+

1

β
EP∼Q[DKL(Q

∗
i ||P)]

)
(88)

=
1

n

n∑
i=1

1

β

(
EP∼Q Eh∼Q∗

i

[
βL̂(h, Si) + ln

Q∗
i (h)

P (h)

])
(89)

=
1

n

n∑
i=1

1

β

(
EP∼Q Eh∼Q∗

i

[
βL̂(h, Si) + ln

P (h) exp(−hL̂(h, Si))
P (h)Zβ(Si, P)

])
(90)

=
1

n

n∑
i=1

1

β
(−EP∼Q lnZβ(Si, P)) (91)

These simplifications allow us to rewrite (27) in Theorem 2.3 as follows

Ltransfer(Q, T) ≤ −
1

n

n∑
i=1

1

β
EP∼Q[lnZβ(Si, P)] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β) (92)

The terms involving the base learner Q as stated in (88) can be regarded as a loss function. As such

it is possible to apply Lemma 2.2 with the conclusion that the Gibbs posterior Q∗(h;Si, P) is the

minimiser of (88). ∀P ∈M(H), ∀i = 1, ..., n:

Q∗
i (h) =

P (h)e−hL̂(h,Si)

Zβ(Si, P)
= argmin

Q∈M(H)
Eh∼Q

[
L̂(h, Si)

]
+

1

β
DKL(Q||P). (93)

Rewrite (92)

28

Ltransfer(Q, T) ≤ −
1

n

n∑
i=1

1

β
EP∼Q[lnZβ(Si, P)] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β) (94)

= − 1

n

n∑
i=1

EP∼Q

[
min

Q∈M(H)
L̂Gibbs(Q,Si) +

1

β
DKL(Q||P)

]
+

(
1

λ
+

1

nβ

)
DKL(Q||P)

+ C(δ, λ, β) (95)

≤ L̂multi(Q, S1, ..., Sn) +
1

n

n∑
i=1

EP∼Q

[
L̂Gibbs(Q,Si) +

1

β
DKL(Q||P)

]
+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β), (96)

which shows that the bound for Gibbs optimal base learners in (32) and (92) is tighter than (27)

which is the bound in Theorem 2.3 which holds uniformly for all Q ∈M(H). 2

2.2.3 Proof of Proposition 2.5

Proof. The PAC bound using Gibbs-optimal base learners in (32) . The RHS of this bound can be

treated as our objective function and reads

J(Q) = − 1

n

n∑
i=1

1

β
EP∼Q[lnZβ(Si, P)] +

(
1

λ
+

1

nβ

)
DKL(Q||P) (97)

= −EP∼Q

[
λ

nβ + λ

n∑
i=1

lnZ(Si, P)

]
+DKL(Q||P), (98)

where all additive terms from (32) have been omitted that do not depend on Q. In the second step

we multiply with the scaling factor λnβ
nβ+λ . As all the described transformations are monotone the

minimising distribution of J(Q) given by

Q = argmin
Q∈M(M(H))

J(Q), (99)

is also the minimiser of (32) which we seek. The objective function J(Q) is a function of the

hyper-posterior. The problem at hand looks structurally similar to Lemma 2.2. In order to

apply it we need to specify the loss function etc. on the meta-level. As such take A = M(H),
g(a) = −

∑n
i=1 lnZ(Si, P), β = 1√

nm̃+1
to show that the optimal hyper-posterior is

Q∗(P) =
P(P) exp

(
λ
nβ

∑n
i=1 lnZβ(Si, P)

)
ZII
β (S1, ..., Sn,P)

(100)

where ZII
β (S1, ..., Sn,P) = EP∼P

[
exp

(
λ
nβ

∑n
i=1 lnZβ(Si, P)

)]
. 2

29

2.3 Optimisation-Based Meta-Learning Revisited in the PAC-Bayesian Frame-

work

In this section some shortfalls of the previously introduced PAC-Bayesian framework in the few-shot

setting will be addressed. The PAC-bounds introduced so far do not yield good results for small test

datasets if the training datasets are large. This exposes a gap in the lack of explainability of the

current PAC-Bayesian theoretical framework of meta-learning and the very impressive performance

of recent optimisation-based meta-learning algorithms. As such the previous bounds will be altered

and then be used in order to derive the MAML and REPTILE algorithms.

As mentioned already and pointed out in Ding et al. [10] one potential drawback of the PAC-bound

in Theorem 2.3 is the assumption that the number of training samples mi from the observed tasks τi

and the number of training examples m for the target task τ are drawn from the same distribution,

ET [mi] = ET [m]. This can be problematic as in most practical applications one would like to leverage

larger training datasets in order to compensate for smaller training sample sizes. This is also the case

in meta-learning benchmark challenges such as Imagenet [41] or BERT [9]. As discussed underneath

the statement of Theorem 2.3 the PAC-bound is only able to produce a loose bound of O(1
m) which is

not very effective for small sample sizes. This shows how the PAC-Bayesian meta-learning framework

is unable to explain the generalisation performance of meta-learning algorithms (such as MAML and

REPTILE) reported in practice.

In order to tackle this problem one can treat the target and observed task environments as different,

with the target environment T and the training tasks (Di,mi) ∼ T̃ drawn from the training

environment.

Theorem 2.7 (Ding et al. [10]) For a target task environment T and an observed task environ-

ment T̃ where ET̃ [D] = ET [D] and ET̃ [m] ≥ ET [m], let P be a fixed hyper-prior and λ > 0, β > 0,

then with probability at least 1 − δ over samples S1 ∈ Dm1
1 , ..., Sn ∈ Dmn

n where (Di,mi) ∼ T̃ , we
have, for all base learner Q and hyper-posterior Q

Ltransfer(Q, T) ≤ L̂multi(Q, S1, ..., Sn) +
(
1

λ
+

1

nβ

)
DKL(Q||P)

+
1

n

n∑
i=1

1

β
EP∼Q[DKL(Q(h;Si, P)||P)] + C(δ, λ, β, n,mi) + ∆λ

(
P, T , T̃

)
, (101)

where ∆λ

(
P, T , T̃

)
= 1

λ lnEP∼P e
λ(Ltransfer(P,T)−Ltransfer(P,T̃))

This bound is very similar to the bound (27) given in Theorem 2.3 except for the additional penalty

term ∆λ

(
P, T , T̃

)
. In case ET̃ [mi]≫ ET [m] this decoupling of the training of the training and test

environment appears beneficial, as m̃ is bigger than in Theorem 2.3, as a result the error asymptotics

O(1
m̃) are smaller. Regrettably the additional term ∆λ

(
P, T , T̃

)
becomes larger with an increasing

ET̃ [m̃]. A possible way to mitigate this problem is by considering only a subset S′
i ∼ Dm′

i from

Si where m and m′
i follow the same distribution and m′

i ≤ mi. Then only this subset S′
i is used

to train the base learner Q(h;S′
i, P). At the same time all examples of Si ∼ Dmi

i are used for

30

evaluating the empirical Gibbs error L̂Gibbs(Q(h;S
′
i, P), Si), so that the larger mi in the empirical

Gibbs error L̂Gibbs(Q(h;S
′
i, P), Si) help tighten the generalisation gap. This revised strategy leads

to the following bound.

Theorem 2.8 (Ding et al. [10]) For a target task environment T and an observed task environ-

ment T̃ where ET̃ [D] = ET [D] and ET̃ [m] ≥ ET [m], let P be a fixed hyper-prior and λ > 0, β > 0,

then with probability at least 1− δ over samples S1 ∈ Dm1
1 , ..., Sn ∈ Dmn

n where (Di,mi) ∼ T̃ , and
subsamples S′

1 ∈ D
m′

1
1 ⊂ S1, ..., S′

n ∈ D
m′

n
n ⊂ Sn, where E[m′

i] = ET [mi] we have, for all base learner

Q and hyper-posterior Q

Ltransfer(Q, T) ≤ EP∼Q

[
1

n

n∑
i=1

L̂Gibbs(Q(h;S′
i, P), Si)

]
+

(
1

λ
+

1

nβ

)
DKL(Q||P)

+
1

n

n∑
i=1

1

β
EP∼Q[DKL(Q(h;S′

i, P)||P)] + C(δ, λ, β, n,mi)

(102)

This theorem provides tight probabilistic guarantees for small m and can be seen as an improved

version of Theorem 2.3. Ding et al. also use it to derive a PAC-Bayesian meta-learning algorithm

called PACMAML. The proofs of both theorems are very similar to the one seen in Section 2.2 with

the three steps of bounding the task-level, the meta-level and then combining both of these. The

first step of bounding the task specific generalisation is in fact identical to the proof of Theorem

2.3. Some changes need to be made for the meta-level and correspondingly for step 3, but the

overall structure of the proof is the same. It is important to note that Theorem 2.3 can be modified

depending on the setting and opens up a whole new class of meta-learning PAC-Bayesian bounds

and algorithms which are derived from those.

One major limitation of the work stated in this essay is that Theorems 2.3, 2.7 and 2.8 not take into

account a data domain shift (e.g. Germain et al. [16]). The target and training environments are

assumed to have the same underlying data generating mechanisms, which is not often the case in

practice. Altering these bounds to take this shift into account requires additional assumptions about

the target environments and is an important area of current research. In Section 4 we will see how

the PACOH-NN algorithm performance can deteriorate significantly in the presence of distribution

shift.

2.3.1 Derivation of MAML and REPTILE

The Theorems 2.7 and 2.8 serve not just as tight bounds in the setting of fewer training data samples,

but they also can be used to derive the MAML and REPTILE algorithms. This is great as it provides

us with a theoretical justification for these algorithms and highlights the broader context in which

these popular meta-learning algorithms exist.

The following derivation is heavily based on the one presented in Ding et al. [10]. We start by

considering the maximum-a-posteriori (MAP) approximations of the base-learners Qi(h), i = 1, .., n

31

and hyper-posterior Q(P) with Dirac (point) measures. Moreover, the isotropic Gaussian priors

with variance parameters σ20 and σ2 for the hyper-prior P(P) and the prior P (h) are chosen. The

hypothesis is parameterised by a vector θ. To summarise

P(P) = N (p|0, σ20Ik),

Q(P) = δ(p = p0),

P (P) = N (h|p, σ2Ik),

Qi(h) = δ(h = qi).

It is reasonable that Dirac measures for the hyper-posterior Q and base-learner Qi are used, since

MAML and REPTILE are used for point-estimate neural networks, as illustrates later in Figure 4

part (a). The goal of the MAP approximation is to find the optimal meta-parameters p0. These

distributions allow us to write the two KL-divergence terms in the PAC-bounds (101) and (102) up

to a constant as follows

DKL(Q,P) =
∫
dp δ(p = p0) ln

δ(p = p0)

N (p|0, σ20Ik)

=

∫
dp δ(p = p0)

(
ln δ(p = p0)− lnN (p|0, σ20Ik)

)
=

∫
dp δ(p = p0)

(
ln δ(p = p0)− ln

(
1√

(2π)k det(σ20Ik)
e
− 1

2
(p−0)T 1

σ2
0
Ik(p−0)

))

=

∫
dp δ(p = p0)

(
ln δ(p = p0)− ln

(
1√

(2πσ20)
k det(Ik)

e
− 1

2
pT 1

σ2
0
Ikp

))

=

∫
dp δ(p = p0)

(
ln δ(p = p0) +

||p2||
2σ20

+
k

2
ln(2πσ20)

)
=
||p2

0||
2σ20

+
k

2
ln(2πσ20) + c,

where
∫
dp δ(p = p0) ln δ(p = p0) = 0, k the dimension of p and c just the integration constant for

an indefinite integral. Similarly,

EP∼Q[DKL(Qi||P)] =
∫
dp δ(p = p0)

∫
dh δ(h = qi) ln

δ(h = qi)

N (h|p, σ2Ik)

=

∫
dp δ(p = p0)

∫
dh δ(h = qi)

(
||h− p||2

2σ2
+
k

2
ln(2πσ2) + ln δ(h = qi)

)
=

∫
dp δ(p = p0)

(
||qi − p||2

2σ2
+
k

2
ln(2πσ2)

)
=
||p0 − qi||2

2σ2
+
k

2
ln(2πσ2) + c′,

where we again substituted the definition of a normal density function in the second equality. With

all of these assumptions it is possible to write the RHS of PAC-Bayesian bound (PacB) in equation

32

(101) and equation (102) as follows

PacB(p0) =
1

n

n∑
i=1

L̂Gibbs(qi, Si) +
ξ̃||p0||2

2σ20
+

1

nβ

n∑
i=1

||p0 − qi||2

2σ2
+ C ′, (103)

where ξ̃ = 1
λ + 1

nβ and C ′ is a constant the exact value of which depends on the bound used. Since

we will be minimising the expression the exact value of the constant is not important and will not

be computed. The base-learner Qi = δ(h = qi) is determined by its parameter vector qi, which can

be a function of p0 and Si for equation (101) (or p0 and S′
i for equation (102)). As such the only

free variable in equation (103) is p0. One approach to find the MAP estimator of PacB is through

gradient descent on p0.

In case qi = p0 the gradient of equation (103) reduces to that of multi-task pre-training.

lim
qi→p0

d(PacB)

dp0

=
ξ̃p0

σ20
+

1

n

n∑
i=1

d

dp0

L̂Gibbs(p0, Si) (104)

Note that in equation (101) for a given p0 and Si, there exists an optimal Dirac-base-learner q∗
i in

the form

q∗
i = argmin

qi

[
L̂Gibbs(qi, Si) +

||p0 − qi||2

2σ2

]
(105)

Given this optimal q∗
i the full derivative of PacB with respect to p0 is given by

d(PacB)

dp0

=
∂(PacB)

∂p0

+

〈
∂q∗

i

∂p0

,
∂(PacB)

∂q∗
i

〉
(106)

=
∂(PacB)

∂p0

(107)

=
ξ̃p0

σ20
+

1

n

n∑
i=1

p0 − q∗
i

βσ2
, (108)

where the second equation is true because ∂(PacB)
∂q∗

i
= 0 for the optimal base-learner q∗

i = 0. The

RHS of equation (108) can be rewritten as follows

ξ̃

σ20
p0 +

1

βσ2

(
p0 −

1

n

n∑
i=1

q∗
i

)
(109)

This is equivalent to the meta-update of the REPTILE algorithm developed by Nichol et al. [30]

and detailed in equation (6) and Algorithm 2, except that REPTILE does not solve for the optimal

base learner q∗
i , but whose inner loop in an approximate algorithm for the optimal Dirac-base-learner.

From the optimal condition, the base-learner q∗
i satisfies

p0 − q∗
i

βσ2
= ∇q∗

i
LGibbs(q

∗
i , Si). (110)

33

Equation (108) can now be rewritten in the form of an implicit gradient

d(PacB)

dp0

=
ξ̃p0

σ20
+

1

n

n∑
i=1

∇q∗
i
LGibbs(q

∗
i , Si) (111)

In contrast the standard multi-task objective used the explicit gradient, with q∗
i = p0 and

d(PacB)

dp0

=
ξ̃p0

σ20
+

1

n

n∑
i=1

∇p0
LGibbs(p0, Si) (112)

Lastly in case qi is a few gradient steps away from L̂(qi, S
′
i) with initialisation qi = p0, the gradient

of equation (103) reduces to the meta-update of the MAML algorithm as outlined in equation (4)

and Algorithm 1 as σ2 →∞ 3.

lim
σ2→∞

d(PacB)

dp0

=
ξ̃p0

σ20
+

1

n

n∑
i=1

d

dp0

L̂Gibbs(qi, Si) (113)

So the MAML meta-update rule corresponds to a flat prior P and MAP estimates of the hyper-

posterior Q & base-learner Q. One thing to keep in mind is that qi = f(p0, dqi/dp0) is a function

of p0 and dqi/dp0) so it involves higher-order derivatives with respect to p0 which results in

computationally more intensive algorithms. This was already pointed out at the end of Section

1.2. The derivation of the meta-update rules of MAML & REPTILE from the PAC-Bayesian

bounds in Theorem 2.7 and Theorem 2.8 shows that the meta-learning framework introduced in this

section is not some arbitrary theoretical construction, but rather a foundation and extension of the

impressive empirical performance exhibited by optimisation-based meta-learning algorithms. This

should increase our confidence in these bounds and the algorithms derived from them in the next

section.

3As mentioned by Ding et al. [10], a noteworthy difference is that the MAML algorithm assumes Si ∩ S′
i = ∅, while

in the presented setting we assumes S′
i ⊂ Si. However, Theorem 2.8 is still valid when Si ∩ Si = ∅

34

3 The PACOH Algorithm

In Section 1 the general Meta-Learning paradigm was introduced. In addition it was shown how

prominent optimisation-based algorithms like MAML & REPTILE can approach these types of

problems in a more efficient way than vanilla machine learning techniques. Section 2 reviewed the

basics of PAC-Bayesian Theory and showed how the expected error of a machine learning system

can be bounded through its empirical test error with large probability. Following Rothfuss et al.

[39] and predecessors these ideas are extended to a Meta-Learning framework. The majority of the

previous section is concerned with stating the PAC-bound in Theorem 2.3 and then proving the

closed form solution of its tightest version. The PACOH algorithm approximates this closed form

solution of the hyper-posterior to meta-learn a prior for the base-learner, which is then deployed on

the target task.

Even though this section is mainly concerned with the construction of the PACOH algorithm from

Rothfuss et al. [40] based on the minimisation of the bound in Theorem 2.3. Understanding this

procedure allows to derive a whole new class of algorithms which are build from PAC-Bayesian

meta-learning bounds. For example the PACMAML algorithm can be derived from Theorem 2.8

following Ding et al. [10]. In order to understand the PACOH algorithm let us consider again

the PAC-Bayesian framework introduced in Section 2.2 and visualised in Figure 3. The inputs of

the Meta-learning system are the datasets S1, ..., Sn from the n training tasks and a hyper-prior

P ∈M(M(H)), which is a probability distribution over priors. The Meta-learner then outputs a

hyper-posterior Q ∈M(M(H)), which is again a probability distribution over priors. Proposition

2.5 provides us with a closed-form solution to the PAC-optimal Hyper-Posterior (PACOH) which is

given by

Q∗(P) =
P(P) exp

(
λ

nβ+λ

∑n
i=1 lnZβ(Si, P)

)
ZII(S1, ..., Sn,P)

,

with ZII(S1, ..., Sn,P) = EP∼P

[
exp

(
λ

nβ+λ

∑n
i=1 lnZβ(Si, P)

)]
.

Unfortunately the normalisation constant ZII(S1, ..., Sn,P) cannot be calculated in practice because

of the high-dimensional expectation, so Q∗(P) is only known up to a constant. Assuming we can

calculate the lnZβ(Si, P) terms, the first step of the algorithm is to compute the hyper-posterior.

During target training and target testing the algorithm draws a prior for the base-learner from

Q∗(P). As discussed in the previous section if the negative log-likelihood is chosen as a loss function

the optimal Gibbs posterior becomes the generalised Bayesian posterior. Choices for base-learners

discussed here are the Bayesian models Gaussian Processes (GPs) and Bayesian Neural Networks

(BNNs), yielding the PACOH-GP and PACOH-NN algorithms respectively. In essence the PACOH

algorithm meta-learns a GP or BNN prior and then deploys that model on the target task.

3.1 Approximating the PACOH

In order to build a practical meta-learning algorithm when employing BNNs or GPs we assume

a parametric family of priors {Pϕ| ϕ ∈ Φ}. So each prior Pϕ is fully determined by its parameter

35

vector ϕ ∈ Φ. The exact choice for the parameter space Φ varies depending on the base-learner, so

will be discussed later. Given a parametric model like this, the hyper-prior and -posterior become

distribution over the parameter space, i.e. P ∈M(Φ) and Q ∈M(Φ). How exactly the priors Pϕ

are parameterised and the MLL functions lnZβ(Si, P) calculated depends on which Bayesian model

is chosen as a base-learner. Both of these questions will be discussed in the following two sections

fore the cases of GPs and BNNs.

Given the hyper-prior P and generalised marginal-log-likelihood (MLL) functions lnZβ(Si, P) we

can compute the PACOH Q∗(P) using the definition in (34), up to the normalisation constant

ZII(S1, ..., Sn,P) . The problem of trying to compute a posterior which is only known up a constant

is well established in Bayesian statistics and as such we will use three methods for approximate

inference such as Maximum A Posteriori, Variational Inference and Stein Variational Gradient

Descent.

Maximum A Posteriori (MAP) This somewhat simplest method approximates the posterior as

a Dirac-function by attempting to find its largest mode. ϕ∗ = argmax
ϕ∈Φ

Q∗(ϕ)

Variational Inference (VI) Following Blei et al. [6] VI turns an inference problem into an

optimisation problem. It does so through restricting the space of considered hyper-posteriors to

a parametric variational family F = {Q̃v| v ∈ U} ⊂ M(Φ) where the variational posterior Q̃v is

fully determined by its parameter vector v ∈ U . VI then minimises the ’distance’4 or KL-divergence

within this variational family and the PACOH

v∗ = argmin
v∈U

DKL(Q̃v||Q∗) (114)

The KL divergence allows us to pull out the normalisation constant. This means that the ZII is just

an additive constant and can be disregarded in the optimisation process of VI.

Stein Variational Gradient Descent (SVGD) First introduced by Liu and Wang [27] SVGD is

a powerful algorithm which approximates the posterior through an ensemble of K particles which

are updated based on functional gradient descent which minimise the KL-divergence. As such, the

approximation exhibits the form Q̃ = 1
K

∑K
k=1 δ(ϕk). The particles are initialised by sampling from

the hyper-prior ϕk ∼ P . All particles are encoded in one K × dim(ϕ) matrix ϕϕϕ = [ϕ1, ..., ϕK]. SVGD

transports this set of points to match the target distribution. It does so through functional gradient

descent on DKL(Q̃||Q∗) in the reproducing kernel Hilbert space induced by a kernel function k(·, ·).
The particle matrix ϕϕϕ is updated as follows

ϕϕϕ← ϕϕϕ+ ηKKK∇ϕϕϕ lnQ∗ +∇ϕϕϕKKK, (115)

with ∇ϕϕϕQ∗ = [∇ϕ1Q∗(ϕ1), ...,∇ϕK
Q∗(ϕK)]T being a matrix of stacked gradients, the kernel matrix

KKK = [k(ϕk, ϕk′]k,k′ and the step size η of the SVGD update. It is worth noting that because of

4The KL-divergence is not a metric on the space of probability measures due to some obvious violated assumptions
such as symmetry. However, it can be useful to think of it like a distance.

36

the logarithm the normalisation constant can be pulled out and then vanishes in the derivative.

This method can be interpreted as follows, the ηKKK∇ϕϕϕ lnQ∗ term directs particles that are closer to

a mode of the posterior to move in that direction. So this term transports the particles to areas

of higher probability. Lastly the Jacobian ∇ϕϕϕKKK is important because it acts as a repulsive force

between the particles. Without it all particles would eventually converge to the maximum of the

posterior distribution, which would not capture the shape of Q∗ very well.

An overview of these methods and their update rules can be found in Appendix A.2

3.2 Meta-Learning Gaussian Process Priors

In the derivation of the PAC-optimal hyper-posterior a Gibbs posterior Q∗(h) was assumed to

be the base-learner Q : Zm ×M(H) → M(H). As discussed in Section 2.1 the Gibbs posterior

coincides with the generalised Bayesian posterior if the negative log-likelihood l(h, zi) := − log p(zi|h)
is used as a loss function. In this Section we are concerned with the case that the Bayesian model

Gaussian Process (GP) with negative log-likelihood is chosen as a base-learner. The posterior of

the GP then coincides with the Gibbs posterior and moreover the GP model can be used for inference.

GPs are common tools in Bayesian Machine Learning and offer some closed-form expressions which

will prove to be useful. Gaussian Processes are continuous time stochastic process {Xt : t ∈ R>0}
where for all finite number of indices t1 < ... < tk,

(Xt1 , ..., Xtk)
⊤ (116)

is a multivariate Gaussian random variable. This concept is then used in Bayesian Machine Learning

where GPs are regarded as distributions over functions f(x) specified by a mean function m(x) and

a positive definite covariance function (kernel) k(x, x′), here x are the function values and (x, x′) are

all possible pairs with input domain x′ ∈ X . Then write

f(x) ∼ GP(m(x), k(x, x′)). (117)

For all finite subsets of the input domain {x1, ..., xn} ⊂ X , which is the test data, the marginal

distribution is a multivariate Gaussian
f(x1)

...

f(xn)

 = N



m(x1)

...

m(xn)

 ,

k(x1, x1) · · · k(x1, xn)

...
. . .

...

k(xn, x1) ... k(x,xn)


 (118)

with mean vector µ = (m(x1), ...,m(xn))
T and covariance matrix Σi,j = k(xi, xj). For a more com-

prehensive assessment of general Gaussian Processes the interested reader is referred to Rasmussen

et al. [35].

Setup In the GP setup the data points are tuples zi,j = (xi,j , yi,j). For the i-th dataset write

Si = (XXXi, yyyi) with XXXi = (xi,1, ..., xi,mi)
T and yyyi = (yi,1, ..., yi,mi)

T . As GPs are Bayesian methods

37

they require a prior Pϕ(h) = GP(h| mϕ(x), kϕ(x, x
′)) for which is determined by the mean function

mϕ : X → R and kernel kϕ : X × X → R, for ϕ ∈ Φ. The PAC-Bayesian Meta-Learning framework

introduced in Section 2.2 uses a Meta-Learner to learn a hyper-posterior over priors. As such the

major component of the PACOH-GP algorithms is to learn a distribution over priors Pϕ. In order to

do that effectively in a computer one needs to parameterise this prior space or the mean & kernel

functions. Following Fortuin et al. [14] mϕ and kϕ are instantiated as neural networks and the

parameter vector ϕ is meta-learned. Unfortunately it would not be wise to parameterise kϕ directly as

a NN because the positive-definiteness conditions of kernels would not be satisfied in general. As such

a feature map ψϕ on top of a squared exponential kernel is used, kϕ = 1
2 exp(−||ψϕ(x)− ψϕ(x

′)||22).
In Rothfuss et al. [39] mϕ and ψϕ fully-connected Neural Networks with 4 hidden layers and 32

neurons each were used in correspondence with tanh activation functions. With these definitions if

we wanted to sample hypotheses h for input points x1, ..., xn from prior Pϕ, this is done as follows
h(x1)

...

h(xn)

 = N



mϕ(x1)

...

mϕ(xn)

 ,

kϕ(x1, x1) · · · kϕ(x1, xn)

...
. . .

...

kϕ(xn, x1) ... kϕ(x,xn)


 (119)

Over the course of meta-training the parameters ϕ are updates to obtain the posterior. The free

parameters λ, β in the PAC-Optimal Hyper-Posterior expression (34) are chosen as λ = n and

βi = mi. The empirical loss under the GP posterior Q∗ coincides with the negative log-likelihood

of the regression targets yyyi, i.e. L̂(Q∗, Si) = − 1
mi

ln p(yyy| XXXi), Rothfuss et al. [40]. Negative log-

likelihood loss functions are quite standard in Bayesian models and the pre-factor is useful for scaling

tasks of different sample sizes and for some closed form expression later. A generic hyper-prior of a

zero-centred, spherical Gaussian P = N (0, σ2PI). This choice can be motivated by considering that

any parameter space can be scaled to mean zero and that all priors are initially treated as uncorrelated.

As usual in GP regression a Gaussian likelihood is assumed p(yyy| hhh) = N (yyy;h(XXXi), σ
2I), with the

observation noise variance σ2. The loss function can then be written as follows,

L̂(Q∗, Si) = −
1

mi
lnN (yyy;h(XXXi), σ

2I) (120)

=
1

mi
(yyy − h(XXXi))

⊤ 1

σ2
(yyy − h(XXXi))−

1

mi
ln(2π)k|σ2 I| (121)

=
1

miσ2
||yyy − h(XXXi)||2 −

1

mi
ln(2πσ2)k, (122)

with k = dim(yyy). As mentioned earlier the squared loss is sub-Gaussian. Therefore the i.i.d. realisa-

tion of the in-tasks generalisation error V I
ij := L (h,Di)− l (hi, zi,j) and the meta-tasks generalisation

error V II
i := E(D,S)∼T [L(Q(P, S),D)]− L (Q (P, Si) ,Di) are both sub-gamma. As a result the tight

bound for C(δ, λ, β) in equation (29) from Theorem 2.3 applies.

Algorithm The PACOH-GP algorithm consists of two parts. One is the meta-training phase to

approximate the PAC-Optimal Hyper-Posterior which is detailed in Algorithm 3. The second part is

the meta-testing, where the hyper-posterior is used to sample priors for the GP to be deployed on

38

the target task. Since the algorithm depends quite a bit on which inference method from Section

3.1 is used to approximate the PACOH Q∗ we will detail the procedure here for SVGD with K

particles, as the MAP is simply a special case of this with K = 1 and leave the VI to Appendix A.2

and Rothfuss et al. [39]. To keep the notation general we write generic operations, the details of

which can be seen in a table which can be found in the Appendix.

The algorithm takes the datasets S1, ..., Sn from the n tasks and the hyper-prior P as input. The

first step is to do an initial approximation of the PACOH with Init Approx Inference(). In SVGD

this consists of sampling K particles from the hyper-prior ϕ̃k ∼ P to obtain an initial estimate

Q̃ = 1
K

∑K
i=1 δ(ϕ̃k) of the PACOH Q∗. Each of these K particles is then updated according to SVGD

and the gradient information of Q∗. The PAC-Optimal Hyper-posterior for particle k is defined as

Q∗(Pϕk
) = Q∗(ϕk) =

P(Pϕk
) exp

(∑n
i=1

1
mi+1 lnZmi(Si, Pϕk

)
)

ZII(S1, ..., Sn,P)
, (123)

according to (34), choices for λ, β and our parametrisation of the priors. SVGD requires some

gradient information of this expression. roughly speaking this means that one would like to see the

particles move to regions of larger probability under Q∗. This of course is partially balanced with

the repulsive term. In order to compute the SVGD update in (115) we need the gradient of the log

of (123) with respect respect to ϕk, which is given by

∇ϕk
lnQ∗(ϕk) = ∇ϕk

lnP(ϕk) +
n∑

i=1

1

mi + 1
∇ϕk

lnZmi(Si, Pϕk
). (124)

As a result of the logarithm in the SVGD update rule the uncomputable normalisation constant ZII

vanishes. The first term in (124) is known as we defined the hyper-prior. In order to calculate the

(generalised) marginal log-likelihood (MLL) lnZβ(Si, Pϕ) with λ = n, βi = mi consider the following.

lnZβi
(Si, Pϕ) = ln

∫
H
Pϕ(h)

mi∏
j=1

p(zij |h)


βi
mi

dh (125)

= ln

∫
H
Pϕ(h) (p(yyy| XXXi, h)) dh (126)

= ln p(yyy| XXXi, ϕ). (127)

Fortunately this log probability can be computed analytically following Rasmussen et al. [35],

ln p(yyy| XXXi, ϕ) = −
1

2
(yyy −mXXX,ϕ)

T K̃−1
XXX,ϕ(yyy −mXXX,ϕ)−

1

2
ln |K̃XXX,ϕ| −

mi

2
ln 2π, (128)

where K̃XXX,ϕ = KXXX,ϕ + σ2I with the kernel matrix KXXX,ϕ = (kϕ(xi, xj))
mi
i,j=1 and mean vector

mXXX,ϕ = (mϕ(x1), ...,mϕ(xn))
T . As detailed in Algorithm 3 for each of the n tasks expression (128)

is evaluated to obtain the lnZmi(Si, Pϕk
). These terms can then be used to compute ∇ϕk

lnQ∗(ϕk).

However in each iteration the MLL is computed O(K · n) times which can be costly given that

the matrix K̃−1
XXX,ϕ needs to be inverted every time, which requires O(m3

i) operations. As a result

39

it is advantageous to consider mini-batching on the task level in order to calculate an estimate

∇̃ϕ lnQ∗(ϕ). In each iteration a mini-batch of H ≤ n is datasets S1, ..., SH is sampled to form an

unbiased estimate of the hyper-posterior score using the following expression.

∇̃ϕ lnQ∗(ϕ) = ∇ϕ lnP(ϕ) +
n

H

H∑
h=1

1

mh + 1
∇ϕk

lnZmh
(Sh, Pϕk

) (129)

The approximate hyper-posterior Q̃ is then updated by applying the SVGD update rule (115) to all

K particles, which can be written out for each particle as

ϕk ← ϕk + ηtψ
∗(ϕ) with ψ∗(ϕ) =

1

K

K∑
l=1

[k(ϕl, ϕ)∇ϕl
lnQ∗(ϕl) +∇ϕl

k(ϕl, ϕ)]. (130)

This process is repeated until the particles converge or until the maximum number of iterations is

reached.

Algorithm 3 PACOH-GP - Approximate Inference of Q∗ according to Rothfuss et al. [39]

Require: hyper-prior P, dataset S1, ..., Sn, step-size η
1: Q̃ ← Init Approx Inference()
2: while not converged do
3: {ϕ1, ..., ϕk} ← Sample Prior Params(Q̃)
4: for k = 1, ...,K do
5: for i = 1, ..., n do
6: lnZmi(Si, Pϕk

)← −1
2(yyyi −mXXXi,ϕk

)T K̃−1
XXXi,ϕk

(yyyi −mXXXi,ϕk
)− 1

2 ln |K̃XXXi,ϕk
| − mi

2 ln 2π
7: end for
8: ∇ϕk

lnQ∗ ← ∇ϕk
lnP +

∑n
i=1

1
mi+1∇ϕk

lnZmi(Si, Pϕk
)

9: end for
10: Q̃ ← Approx Inference Update(Q̃,∇ϕk

lnQ∗, η)
11: end while

Algorithm 3 returns an estimate of the PAC-Optimal Hyper-posterior Q̃. In the PAC-Bayesian

Meta-learning setup visualised in Figure 3 the base-learner (GP in this case) is presented with a

dataset S̃ = (X̃XX, ỹyy) from a previously unseen task T and prior Pϕ ∼ Q̃ while outputting a GP

posterior Q as a result of its inference. The resulting predictive distribution p̂(y∗| x∗, X̃XX, ỹyy, ϕ) is

again a Gaussian distribution, Rasmussen et al. [35]. Q̃ is a distribution over priors so the resulting

posterior Q of the base learner will depend on the prior Pϕ ∼ Q̃. In order to obtain the predictive

distribution we perform an empirical average. Firstly draw a set of priors from the hyper-posterior

ϕ1, ..., ϕn ∼ Q̃ then form the equally weighted mixture

p̂(y∗| x∗, X̃XX, ỹyy,Q) = Eϕ∼Q

[
p̂(y∗| x∗, X̃XX, ỹyy, ϕ)

]
≈ 1

n

n∑
i=1

p̂(y∗| x∗, X̃XX, ỹyy, ϕk). (131)

As the GP base-learner was chosen, equation (131) corresponds to a mixture of Gaussians and the

average prediction is the average of all models under the priors ϕ1, ..., ϕn. PACOH-GP-MAP K = 1

is a special case of SVGD and here p̂(y∗| x∗, X̃XX, ỹyy,Q) ≈ p̂(y∗| x∗, X̃XX, ỹyy, ϕMAP) is a single Gaussian.

40

3.3 Meta-Learning Bayesian Neural Network Priors

In the PACOH-NN variant of the algorithm the base learner Q : Zm ×M(H) →M(H) is again
chosen as the Gibbs posterior Q∗ with a negative log-likelihood loss function. As previously ex-

plained this means that the Gibbs posterior coincides with the generalised Bayesian posterior for a

probabilistic model. In this version we will consider the case where this model is a Bayesian Neural

Network (BNN). BNNs can be thought of as the Bayesian version of standard fully-connected Neural

Networks. Instead of learning a specific configuration of weights and biases they learn a probability

distribution over these weights or nodes. As shown in Figure 4 there a few different choices for

stochastic NNs in this work we will consider BNNs that learn a probability distribution over the

weights and biases, so (c) in Figure 4.

Figure 4: (a) standard Point estimate Neural Network. (b) and (c) are stochastic Neural Networks,
where (b) provides learns a probability distribution over nodes and (c) over the weights of the
network. This Figure was taken from Jospin et al. [22]

For a more thorough introduction of BNNs the interested reader is referred to the Deep Learning

tutorial from Jospin et al. [22]. The main objective of PACOH-NN is to use the training tasks

to meta-learn BNN priors. Learning BNN priors in general is challenging due to the large num-

ber of dimensions of the weight space and complex mappings between weights and functions as

pointed out by Fortuin [13]. The PAC-Bayesian meta-learning setup introduced in Section 2 how-

ever is very general and applies to BNNs as well if the negative log-likelihood is used as a loss function.

Setup Following Rothfuss et al. [40], let hθ : X → Y be a function parameterised by a Neural Net-

work with weights θ ∈ Θ. The BNN then outputs a probability distribution over all of these weights

as shown in (c) in Figure 4. Using this NN mapping one can define the conditional distribution for

regression again as p(y| x, θ) = N (y| hθ(x), σ2 I). By similar arguments to the GP case the tight

bound for C(δ, λ, β) in equation (29) from Theorem 2.3 applies as well. Here σ2 is referred to as

the noise variance and lnσ is a learnable parameter. As such an hypothesis consists consists of a

tuple h = (θ, lnσ). The logarithm is used in order to avoid positivity constraint on possible h and

simplify the optimisation, since the logarithm is a bijective function this does not impact the chosen

σ. In classification the conditional probability is p(y| x, θ) = Categorical(softmax(hθ(x))). The loss

function is chosen as the negative log-likelihood l(θ, z) = − ln p(y| x, θ).

41

As a next step we need to define a family of priors {Pϕ : ϕ ∈ Φ} over the NN parameters θ ∈ Θ. For

notational convenience these are chosen as Block diagonal Gaussians Pθl = N (µPk
,diag(σ2Pk

)) with

ϕ = (µPk
, lnσPk

). This choice might seem arbitrary or restricting but any parametric distribution

distribution that supports re-parameterised sampling and has tractable log-density could be used

here (e.g. normalising flows from Rezende and Mohamed [37]). Identical to the last section we

choose the hyper-prior over prior parameters ϕ as a zero-centred spherical Gaussian P = N (0, σ2P I).

Again we choose λ = n and βi = mi.

Approximating the marginal log-likelihood Before the algorithm can be introduced one needs to

consider the computation of the marginal log-likelihood (MLL) lnZβi
(Si, Pϕ) = lnEhθ∼Pϕ

e−βi L̂(hθ,Si) =

lnEθ∼Pϕ
e−βi L̂(θ,Si) which is needed in order to calculate the PACOH Q∗. Calculating lnZβi

(Si, Pϕ)

directly is difficult due to several reasons. Firstly, unlike for Gaussian Processes, there is no convenient

analytical expression available. Secondly, computing the partition function involves taking a high

dimensional expectation over Θ, which can be computationally challenging. Additionally, numerical

instabilities arise when computing e−βiL̂(θ,Si) for large mi and thus large βi. This is because the

exponential term becomes very small, and taking the logarithm produces large numbers, leading to

numerical overflow or underflow errors. In order to overcome these problems the reparameterisation

developed by Kingma and Welling [24] and the Log Sum expectation (LSE) is used, which is defined

as follows

LSEL
l=1(xl) = ln ex1 + ...+ exL − lnL (132)

The LSE operator is nice because it allows us to normalise a vector of log probabilities effectively and

results in numerical stability. For some more details on how the normalisation for the LSE operator

works see Appendix A.3. The reparameterisation trick allows us to derive an alternative method to

sample from some conditional distribution qϕ(z| x). It works by considering some random variable z

that is distributed according to that conditional distribution z ∼ qϕ(z| x). It is often possible to

consider an additional variable ϵ such that z ∼ gϕ(ϵ, x). For some vector valued functions qϕ, gϕ

parameterised by ϕ. This will prove helpful as the Monte Carlo estimate of the expectation of qϕ(z| x)
is differentiable. Since we want to estimate ∇ϕ lnZβ(Si, Pϕ) in order to compute Q∗. The LSE

operator will form the Monte-Carlo estimator and with the reparametrisation trick the differential is

guaranteed. More specifically, draw L samples θl = f(ϕk, ϵl) = µPk
+ σPk

⊙ ϵl, ϵl ∼ N (0, I). The

generalised MLL estimate is given by

ln Ẑβ(Si, Pϕ) := LSEL
l=1

(
−βiL̂(θl, Si)

)
− lnL (133)

Computing the differential w.r.t. ϕ

42

∇ϕ ln Ẑβ(Si, Pϕ) = ∇ϕ

[
LSEL

l=1

(
−βiL̂(f(ϕk, ϵl), Si)

)
− lnL

]
(134)

= ∇ϕ

[
ln

(
L∑
l=1

e−βiL̂(f(ϕk,ϵl),Si)

)]
(135)

=
1∑L

l=1 e
−βiL̂(f(ϕk,ϵl),Si)

L∑
l=1

(
e−βiL̂(f(ϕk,ϵl),Si)(−βi)∇ϕL̂(f(ϕk, ϵl), Si)

)
(136)

= −βi
L∑
l=1

e−βiL̂(f(ϕk,ϵl),Si)∑L
l=1 e

−βiL̂(f(ϕk,ϵl),Si)︸ ︷︷ ︸
softmax

∇ϕf(ϕ, ϵl)
⊤︸ ︷︷ ︸

re-param. Jacobian

∇θlL̂(θl, Si)︸ ︷︷ ︸
score

. (137)

Unfortunately ln Ẑβ(Si, Pϕ) is not an unbiased estimator, but it is consistent. As lnZβ(Si, Pϕ)

is replaced with our estimator ln Ẑβ(Si, Pϕ) it needs to be verified that we still minimise a valid

PAC-Bayesian upper bound for the transfer error. The following proposition ensures this.

Proposition 3.1 (Rothfuss et al. [40]) In expectation, replacing lnZβ(Si, Pϕ) in (32) by the

Monte-Carlo estimator ln Ẑβ(Si, Pϕ) := ln 1
L

∑L
l=1 e

−βiL̂(θl,Si), still yields a valid upper bound of the

transfer error. In particular it holds that

Ltransfer(Q, T) ≤ −
1

n

n∑
i=1

1

β
EP∼Q[lnZβ(Si, P)] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β) (138)

≤ − 1

n

n∑
i=1

1

β
EP∼Q

[
Eθ1,...,θL∼P

[
ln Ẑβ(Si, P)

]]
+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β)

(139)

Proof. Firstly, we show that

Eθ1,...,θL∼P

[
ln Ẑβ(Si, P)

]
= Eθ1,...,θL∼P

[
ln

1

L

L∑
l=1

e−βiL̂(θl,Si)

]

≤ ln
1

L

L∑
l=1

Eθl∼P e
−βiL̂(θl,Si)

= lnEθ∼P

[
e−βiL̂(θ,Si)

]
= lnZβ(Si, P).

The inequality in the second line followed directly from the concavity of the logarithm and Jensen’s

inequality for concave functions, which is stated for reference in Theorem A.2. From the above

inequality follows Proposition 3.1 directly. 2

Using the MC estimator still yields a valid upper bound, but (139) is potentially looser than the

original bound. Moreover, by the law of large numbers, ln Ẑ(Si, P)→ lnZ(Si, P) as L→∞. So for

43

large sample sizes L the original bound (32) is recovered.

Algorithm Identical to PACOH-GP the meta-training and testing stages are separated. With the

established setup and MLL estimator Algorithm 4 details the meta-training stage of PACOH-NN

in order to approximate Q∗. It follows very similar steps to PACOH-GP, with the main difference

being the replacement of the MLL lnZβi
(Si, Pϕk

) with the described MC estimator ln Ẑβi
(Si, Pϕk

).

Analogously to (129) it is convenient to use mini-batching in order get an estimate ∇̃ϕ lnQ
∗(ϕ) using

nbs ≤ n tasks and adjusting the truncated sum by a factor of n
nbs

.

Algorithm 4 PACOH-NN - Approximate Inference of Q∗ according to Rothfuss et al. [39]

Require: hyper-prior P, dataset S1, ..., Sn, step-size η
1: Q̃ ← Init Approx Inference()
2: while not converged do
3: {ϕ1, ..., ϕk} ← Sample Prior Params(Q̃)
4: for k = 1, ...,K do
5: {θk1 , ..., θkL} ∼ Pϕk

6: for i = 1, ..., n do
7: ln Ẑβi

(Si, Pϕk
)← LSEL

l=1(−βiL̂(θkl , Si))− lnL
8: end for
9: ∇ϕk

ln Q̂∗ ← ∇ϕk
lnP(ϕk) +

∑n
i=1

λ
nβi+λ∇ϕk

ln Ẑβi
(Si, Pϕk

)
10: end for
11: Q̃ ← Approx Inference Update(Q̃,∇ϕk

lnQ∗, η)
12: end while

If the mini-batched version in correspondence with SVGD is used to approximate Q∗ the algorithm

transports K particles each iteration to approximate the hyper-posterior. In each forward step of the

algorithm L NN-parameters (of dimensionality |Θ|) are sampled per prior particle and deployed on

nbs tasks to estimate the score of Q∗. This results in a space complexity of O(|Θ|K + L) and a time

complexity of O(K2 +KLnbs) for a single iteration of the algorithm. In most experiments done in

Section 4 20 000 iterations of the algorithm are done, but this can very depending on application and

computational resources at hand. Running Algorithm 4 results in an estimate of the PAC-optimal

hyper-posterior Q̃ from which BNN priors can be sampled.

Similar to PACOH-GP the second part of the algorithm is the meta-testing stage, where the system

is presented with an unseen learning task τ = (D,m) ∼ T and dataset S̃ ∼ Dm. Identical to meta-

testing in the GP case we expect our resulting inference to depend upon the prior sampled Pϕ ∼ Q̃.
Therefore the meta-testing is commenced by sampling a set of K priors from the hyper-posterior

{Pϕ1 , ..., PϕK
} ∼ Q̃. BNNs as Bayesian base-learners use a prior Pϕ(h) and dataset S̃ to output

a posterior Q∗(h; S̃, Pϕ). Unfortunately this posterior is for BNNs not analytically available and

a rather complicated expression. Similar to the discussion earlier in Section 3.1 Q∗(h; S̃, Pϕ) is

approximated using SVGD, which is a standard choice for BNNs. In this case L particles approximate

Q∗(h; S̃, Pϕk
) for each of the K drawn priors Pϕk

. Algorithm 5 details the procedure. The resulting

set of K ·L NN parameters can then be used for inference on a desired input x∗ in the following way

44

p̃(y∗| x∗, S̃) = 1

K

K∑
k=1

1

L

[
L∑
l=1

p
(
y∗| hθkl (x

∗)
)]

=
1

K · L

K∑
k=1

L∑
l=1

p
(
y∗| hθkl (x

∗)
)
.

Algorithm 5 PACOH-NN - meta-testing according to Rothfuss et al.[39]

Require: set of prior {Pϕ1 , ..., PϕK
}, target training data set S̃, evaluation point x∗

Require: kernel function k(·, ·), SVGD step size ν, number of particles K
1: for k = 1, ...,K do
2: {θk1 , ..., θkL} ∼ Pϕk

3: while not converged do
4: for l = 1, ..., L do
5: ∇θkl

Q∗(θkl)← ∇θkl
lnPϕk

(θkl) + β∇θkl
L(l, S̃)

6: end for
7: θkl ← θkl + ν

L

∑L
l′=1

[
k(θkl′ , θ

k
l)∇ϕk

l′
Q∗(θkl′) +∇θk

l′
k(θkl′ , θ

k
l)
]

8: end while
9: end for

Output: a set of NN parameters ∪Kk=1{θk1 , ..., θkL}

3.4 Discussion

One of the key advantages of PACOH-NN compared to previous methods for meta-learning BNN

priors, such as in Pentina and Lampert [31] and Amit and Meir [2], is that it simplifies the previously

nested optimisation problem into a stochastic optimisation problem. This results in increased

stability and scalability of meta-learning, as there is no need to explicitly compute the task posteriors

Qi and mini-batching over tasks can be used. As a result, the space and compute complexity do not

depend on the number of tasks n, unlike the MLAP algorithm from Amit and Meir [2], which has a

memory footprint of O(|Θ| · n) and becomes prohibitive for more than 50 tasks.

In addition, PACOH-NN includes a hyper-prior P that provides principled meta-level regularisation,

which addresses overfitting to the meta-training tasks detailed in Yin et al. [44]. As shown in

experiments done by Rothfuss et al. [39], PACOH-NN can do successful meta-learning with as few

as 5 tasks. This is in contrast to other popular meta-learners such as MAML from Finn et al. [11],

its Bayesian version BMAML [23] from Kim et al. and Neural Processes Garnelo et al. [15], which

require a large number of tasks to generalise well on the meta-level, as noted by Qin et al. [34].

All of the algorithms discussed in this Section operate in the weight or parameter space |Θ| of
the neural networks, such as the SVGD or VI approximations. This can be a severe limitation as

NN weight spaces are heavily overparametrised, as mentioned by Baldassi et al. [4]. For example

every single mode of the posterior is degenerate in the sense that many parameter configurations

correspond to the same NN. This is partially due to the inherent symmetries of a neural network.

45

The authors Rothfuss et al. have proposed a functional extension of PACOH called F-PACOH

[38], where the gradient updates are done in the output space of the neural networks and then

backpropagated using the chain rule to arrive at an optimal parameter configuration. Due to the

limited scope of this essay these interesting ideas will not be discussed here any further but the

intrigued reader is referred to Rothfuss et al. [38] to see the functional extension of PACOH and to

D’Angelo et al. [8] to see how SVGD can be converted to function space.

46

4 Numerical Experiments

This section will show some numerical results of the algorithms discussed so far with a particular

emphasis on PACOH-NN. Modern state-of-the-art deep learning models such as the ones presented

here are usually trained on vast datasets using large GPU computing clusters which were not

available for this project. Therefore this section should be understood as more of a qualitative

presentation as opposed to an exhaustive numerical study. Four experiments will be detailed. The

first one is a slightly modified version of the standard sinusoids environment where the BNN, MAML,

PACOH-NN, PACOH-GP algorithms are compared. Experiment 2 details a possible application for

PACOH-NN-SVGD for a Sinc environment. In the third experiment a hyper-parameter investigation

is done for PACOH-NN-SVGD for the Cauchy environment introduced in Rothfuss et al. [40]. Lastly,

the problem of train/- test time distribution shift is illustrated for PACOH-NN-SVGD. The code for

the experiments was adapted from Rothfuss et al. [40] and can be found in Flöge [12]

Experiment 1: 1D Noisy Sinusoids regression

As an initial qualitative experiment to compare some of the algorithms discussed in this essay the

standard sinusoids environment for meta-learning will be used with a slight twist. We will preform

one-dimensional function regression in the domain [−4, 4]. The task are differentiated through the

random parameters A ∼ U [−4, 4] and ϕ ∼ U [−2, 2] and

fA,ϕ(x) = A · sin(x− ϕ) + 5 (140)

The training dataset for each task in then created by sampling xi ∼ N (0, 1) and yi ∼ fA,ϕ(xi) + ϵj ,

where ϵj ∼ N (0, 0.12). For the meta test data xi ∼ U(−4, 4). The main difference to the standard

sinusoids environment is that the training data is sampled from a standard normal N (0, 1) so the

algorithms see few to no data on the ends of the domain. The data training data is plotted in the

following Figure 5

Figure 5: Experiment 1 training data

We use 200 training tasks with 5 samples per task. During the meta-test stage 20 tasks are sampled

with 5 context samples 5 and 200 test samples. The posterior of a Vanilla BNN, MAML, PACOH-GP

and PACOH-NN are visualised in Figure 6. We trained the algorithms for 20 000 iterations and 300

5context samples refer to labelled examples from a respective task. This is the few shot learning

47

meta test iterations. A task batch size of 10 was used for MAML.

(a) (b)

(c) (d)

Figure 6: Noisy sinusoids environment for four algorithms. Two test tasks were plotted with red
points representing the context samples and blue the test samples. (a) Vanilla BNN (b) MAML (c)
PACOH-NN-SVGD (d) PACOH-GP-MAP

In Figure 6 the resulting posterior for two test tasks are plotted for each of the four algorithms. The

green line corresponds to the mean posterior and the blue areas to the confidence interval around the

prediction. Please note that since MAML optimises point-estimate Neural Networks as visualised in

Figure 4 the concept of a confidence interval does not apply. The red points refer to the context

samples the algorithms received form that task and the blue points are the test points. It can be

seen in (a) that the Vanilla BNN does not pick-up on the sinusoidal structure of the data at all.

The MAML (b) does not perform so bad, but on the ends of the domain where no test data was

present the algorithm’s performance deteriorates. (c) PACOH-NN-SVGD is doing relatively well at

capturing the true line within its confidence, (d) PACOH-GP-MAP appears to be smoother and less

adaptive than PACOH-NN in its confidence intervals which is likely due to the lack of flexibility of a

MAP estimate.

Experiment 2: 2D Sinc function regression

The function Sinc : R→ R is formally defined by

Sinc(x) =
sin(x)

x
(141)

These are ubiquitous in science and engineering. In communications theory they can be used to

represent the impulse response of an ideal low-pass filter. Low-pass-filters are electrical circuits

which are commonplace in almost every signal processing unit. In optics and quantum mechanics

sinc functions can be used to model the interference pattern of a double slit experiment. As such if

we consider two dimensional detector plate the two-dimensional regression problem for sinc function

48

is an important application as outlined in Bishop and Tipping [5].

Here we will extend this experiment by not just considering Additive White Gaussian Noise (AWGN)

on the interference of two sinc functions, but rather a more complicated Gaussian process prior noise

term. For this we use the kernel k(x, x′) = exp
(
||x−x′||2

l

)
with l = 0.2.

h(x) = Sinc (||x− µ1||2) + 2Sinc(||x− µ2||2), (142)

f(x) = h(x) + g(x), with g ∼ GP(0, k(x, x′). (143)

The target data is then generated as follows x = min(max(x̃,−10), 10),

y ∼ N (f(x), 0.052). (144)

The mean function h(x) is depicted in Figure 7.

Figure 7: Mean function h(x) for the sinc environment. The plot was generated for µ1 = (1, 3) and
µ2 = (−2,−2)

We will use the PACOH-NN-SVGD algorithm with number of iteration 20000, ReLu activation

function and 20 context samples.

In order to evaluate the performance of the algorithm the average Root-Mean-Squared-Error (RMSE)

is used. Given a dataset (x∗, y∗)mi
j=1 = S∗

j . The RMSE for datset S∗
i is defined as follows

RMSE(S∗
i) =

√√√√ 1

|S∗
i |

∑
(x∗,y∗)∈S∗

i

(y∗ − ŷ)2, (145)

where ŷ is the prediction of the model corresponding to input x∗. If we have n test tasks with

datasets S∗
1 , ..., S

∗
n the the average RMSE is the averaged RMSE of all training tasks.

49

Figure 8: Training loss of PACOH-NN-SVGD with respect to number of iterations during training
in the Sinc environment.

average RMSE =
1

n

n∑
i=1

RMSE(S∗
i) =

1

n

n∑
i=1

√√√√ 1

|S∗
i |

∑
(x∗,y∗)∈S∗

i

(y∗ − ŷ)2 (146)

In addition to the average RMSE, calibration is a crucial process for probabilistic predictors that

generate a probability distribution p̂ (yi | xi) of predicted target values yi when presented with a new

input xi. One would like this predicted probability to behave like the true underlying probability,

this is then referred to as a calibrated model. Calibration error for regression is defined as follows.

Corresponding to the predictive density, we denote a predictor’s cumulative density function (CDF)

as F̂ (yj | xj) =
∫ yj
−∞ p̂ (y | xi) dy. For confidence levels 0 ≤ qh < . . . < qH ≤ 1, we can compute the

corresponding empirical frequency

q̂h =

∣∣∣{yj | F̂ (yj | xj) ≤ qh, j = 1, . . . ,m
}∣∣∣

m
(147)

based on dataset S = {(xi, yi)}mi=1 of m samples. If we have calibrated predictions we would expect

that q̂h → qh as m→∞. Similar to Kuleshov et al. [25], we can define the calibration error as a

function of residuals q̂h − qh, in particular,

calibration error =
1

H

H∑
h=1

|q̂h − qh| . (148)

Note that while Kuleshov et al. [25] report the average of squared residuals |q̂h − qh|2, following
Rothfuss et al. [40] we report the average of absolute residuals |q̂h − qh| in order to preserve the

units and keep the calibration error easier to interpret. The confidence levels 0 ≤ q1 < ... < qH ≤ 1

are chosen equally spaced in [0, 1].

For our experiment set µ1 = (0, 0)⊤ and µ2 is drawn from a truncated normal with domain [−10, 10]
and variance σ2 = 3. This can be interpreted as aligning the detector plate with one of the sources

and then being flexible with the location of the second source. For 20 training tasks and 20 context

50

samples per task we get an average RMSE of 0.3606± 0.0861 and a calibration error 0.410± 0.0146.

Which is relatively good for such a complicated environment.

Experiment 3: Hyper-parameter tuning in Cauchy environment

Detailed in Rothfuss et al. [40] the Cauchy environment is a 2D regression environment very similar

to the sinc environment detailed in the previous experiment. Here the mean function is given by an

unnnormalised mixture of two Cauchy distributions, i.e.

m(x) =
6

π · (1 + ||x− µ1||22
+

3

π · (1 + ||x− µ2||22)
, (149)

with µ1 = (−1,−1)⊤ and µ2 = (2, 2)⊤. The kernel function is again defined as k(x, x′) =

exp
(
||x−x′||2

l

)
with l = 0.2. The tasks are then sampled from the task environment as follows

f(x) = h(x) + g(x), with g ∼ GP(0, k(x, x′). (150)

The samples from each task are generated according by drawing x from a truncated normal

distribution and then applying additive Gaussian noise with standard deviation 0.05 to the function

values f(x). For x = min(max(x̃,−10), 10),

x̃ ∼ N (0, 2.52), y ∼ N (f(x), 0.052). (151)

On this environment Rothfuss et al. [40] reported the following results for different meta-learning

algorithms.

Algorithm average RMSE calibration error

Vanilla GP 0.275± 0.000 0.087± 0.000

Vanilla BNN (Liu & Wang, [27]) 0.327± 0.008 0.055± 0.006

MLL-GP ((Fortuin & Ratsch, [14]) 0.216± 0.003 0.059± 0.003

MLAP (Amit & Meir, [2]) 0.219± 0.004 0.086± 0.015

MAML (Finn et al., [11]) 0.219± 0.004 N/A

BMAML (Kim et al., [23]) 0.225± 0.004 0.061± 0.007

NP (Garnelo et al., [15]) 0.224± 0.008 0.057± 0.009

PACOH-GP-SVGD (Rothfuss et al., [40]) 0.209± 0.008 0.056± 0.004

PACOH-NN-SVGD (Rothfuss et al., [40]) 0.195± 0.001 0.046± 0.001

For this comparison the algorithms were trained with mi = 20 context samples on each of the n = 20

tasks sampled from the Cauchy environment. It is important to note that the MAML algorithm

operates on point estimate NNs, which means that the concept of calibration-error does not apply.

It can be seen that the PACOH algorithms outperform all the other listed meta-learners or Bayesian

models. Especially PACOH-NN-SVGD has the best performance in terms of average RMSE and

calibration error. The authors Rothfuss et al. demonstrated similar impressive performance on

other meta-learning datasets such as SwissFel (Milne et al. [42]), Physionet (Silva et al. [33]),

Berkeley-Sensor (Madden [28]) and Omniglot (Lake et al. [26]). This showcases the impressive state

51

of the art performance of the PACOH algorithms in meta-learning problems.

The methods introduced in this essay have a lot of tuning parameters which need to be specified.

In order to investigate PACOH-NN-SVGD further a hyperparameter study is done. The main

parameters with their default configurations for this experiment are:

• Number of particles K to approximate hyper-posterior, K = 3

• Number of particles K to approximate BNN posterior, L = 5

• Size of hidden layers, (32, 32, 32, 32)

• learning rate, lr = 1.5 · 10−3

• number of meta-train iterations, 20 000

• number of samples per task, m = 20

• number of tasks, n = 20

• Standard deviation of hyper-prior, σP = 0.12

The average RMSE for the Cauchy environment goes to zero with increasing numbers of training

tasks n for PACOH-algorithms as demonstrated in Rothfuss et al. [40]. With the hyperparameters

specified as above the average RMSE is 0.2071± 0.0194 and calibration error 0.0489± 0.0248. In the

PACOH-NN algorithm SVGD inference is used twice. Firstly K particles are used to approximate

the hyper-posterior Q∗ and secondly L particles are used to approximate the posterior Q∗. As such

the dependence of the average RMSE and calibration error with respect to the number of particles

K and L is investigated. the results are displayed in Figure 9.

It can be seen in Figure 9 that the average RMSE and calibration error barely change with respect

to the number of hyper-posterior and posterior-particles. There is a slight negative trend initially on

all the plots, as on would expect more particles to better represent the shape of the distribution.

For the MAP K = 1 or L = 1 the standard deviation for the average RMSE and calibration error

tend to be larger. This is likely a result of the fact that the approximation of Q∗ and Q∗ by a

Dirac-measure does not capture the shape of these distributions well. The overall change in error

is quite small. Possible explanations are that the number of meta-train iterations was too small

to transport the particles properly or that the standard-deviation of the hyper-prior σP is too

small. The first explanation seems unlikely for the RMSE and Calibration barely change even with

respect to the MAP estimate. To investigate the second possible explanation a little further, the

standard-deviation of the hyper-prior was increased to σP = 1.

Number of Hyper-posterior particles Average RMSE Calibration error

5 0.2114± 0.0203 0.0434± 0.0204

10 0.2074± 0.0212 0.0411± 0.0183

52

(a) (b)

(c) (d)

Figure 9: The shaded region in all the plots represents the mean with added/subtracted standard
deviation of the obtained values. (a) and (b): average RMSE and calibration error respectively with
respect to number of hyper-posterior particles. (c) and (d): average RMSE and calibration error
respectively with respect to number of posterior particles

Again no significant deviation in the RMSE and calibration error can be noted from the previous

results. This indicates that the PACOH-NN-SVGD is a rather robust algorithm with respect to the

number of particles used to approximate the hyper-posterior Q∗ and BNN posterior Q∗.

The next investigation is done with respect to the size of the hidden layers. Here the notation

(32, 32, 32, 32) indicates that 4 fully-connected layers with 32 nodes each are used as a hidden layer.

The results are displays in the following Table.

Hidden Layer size Average RMSE Calibration Error Average Log-Likelihood

(32, 32) 0.2052± 0.0156 0.0450± 0.0179 0.1602± 0.0851

(32, 32, 32, 32) 0.2071± 0.0194 0.0480± 0.0255 0.1642± 0.0847

(32, 32, 32, 32, 32, 32) 0.2012± 0.0196 0.0480± 0.0255 0.1859± 0.0839

(32, 32, 32, 32, 32, 32, 32, 32) 0.2048± 0.0187 0.0530± 0.0273 0.1707± 0.0908

(64, 64, 64, 64) 0.2090± 0.0188 0.0470± 0.0262 0.1515± 0.0981

(64, 64, 64, 64, 64, 64, 64, 64) 0.2125± 0.0219 0.0628± 0.0391 0.1266± 0.1330

It can be seen that the average RMSE error again does vary all too much. A small trend can be seen

in the calibration error when the depth of the 32 node layers is increased. The worst calibration is

53

seen in the largest of the investigated hidden layers. This could be the meta-learning analogue to a

phenomena in standard supervised learning pointed out by Minderer et al. [29], where in-distribution

calibration worsens with increasing model size as. However, due to the increasing standard deviation

in the calibration error for larger networks further investigation is necessary to confirm this.

Next the dependence on the number of meta-train iterations is investigated.

(a) (b)

Figure 10: The shaded region in all the plots represents the mean with added/subtracted standard
deviation of the obtained values. (a) average RMSE with respect to number of meta-train iterations
(b) calibration error with respect to number of meta-train iterations

Figure 10 shows how the average RMSE and calibration increases sharply for 1000 meta-train

iterations. This is likely because the training process was stopped before the particles approximating

the hyper-posterior converged. Both metrics appear to flatten for larger numbers of iterations, which

is probably a result of the fact that the particles had converged already so SVGD does not update

them further which makes additional training futile. Based on these findings we conclude that the

number of meta-training iterations, if set ’high enough’, is not an influential hyper-parameter. As to

what constitutes ’high enough’ exactly likely depends on the size of the hidden layers and therefore

the size of parameter space |Θ|. This could be interesting point of further investigation.

Lastly the significance of the number of context samples m is investigated. In Figure 11 it can

be seen how the average RMSE and calibration error peak sharply for m = 1 or m = 2. This is

because the meta-learner does not have enough data on the two dimensional function f(x) to learn

it accurately. It probably just learns the approximate range of the function and then randomly

guesses. With increasing number of context samples the average RMSE decreases. This is expected

as the learner can get more information from each task and also has more labelled examples from

the unseen test tasks. Which of these effects contributes more cannot be inferred directly from the

graphic above, however we suspect that the latter is more important. The calibration error also

peaks sharply for smaller m and then remains roughly steady.

Experiment 4: 1D sinusoids regression in training-/ test-time distribution shift As

mentioned in the beginning of Section 2.3 the PAC-Bayesian Meta-Learning theorems derived in

this essay do not hold in the presence of a training-/ test-time distribution shift. In order to

54

(a) (b)

Figure 11: The shaded region in all the plots represents the mean with added/subtracted standard
deviation of the obtained values. (a) average RMSE with respect to number of context samples (b)
calibration error with respect to number of context samples

illustrate this numerically we will perform the following experiment on PACOH-NN-SVGD. Consider

one-dimensional function regression in the domain [−4, 4]. The task are differentiated during training

time through the random parameters A ∼ U [−4, 4], ϕ ∼ U [−2, 2] and

f trainingA,ϕ (x) = A · sin(x− ϕ) + 5 + (x− ϕ) (152)

During test time the tasks are generated through sampling A ∼ U [−4, 4], ϕ ∼ U [−2, 2] and

f testA,ϕ (x) = A · cos(x− ϕ) + 5 + (x− ϕ) (153)

The training dataset for each task in the created by sampling xi ∼ U [−4, 4] and yi ∼ f trainingA,ϕ (xi)+ ϵi,

where ϵi ∼ N (0, 0.12). For the meta test data xi ∼ U [−4, 4] and yi ∼ f trainingA,ϕ (xi) + ϵi, where

ϵi ∼ N (0, 0.12). Here unlike in Experiment 1 the training data is sampled uniformly across the

domain. The main difference to the sinusoids environment used in Rothfuss et al. [40] is that

f trainingA,ϕ (x) ̸= f testA,ϕ (x) as the sin(x−ϕ) term was replaced cos(x−ϕ). Figure 12 depicts the posterior

PACOH-NN-SVGD on three test tasks. It can be seen that the algorithm performs much worse

than reported in Rothfuss et al. [40]. The posterior does not really line up with true shape of the

curve. The average RMSE, as described in (146), is 1.7699 ± 0.5795 and the calibration error is

0.1836± 0.0745. Both of these are not very good values. However, it is worth pointing out that the

confidence intervals in Figure 12 mainly capture the true shape. This is desirable as it indicates that

these PAC-Bayesian meta-learners realise that the test data is not what they expect and widen the

confidence intervals accordingly, which is a major advantage over point-based NN algorithms such

as MAML or REPTILE. An interesting point of further research would be to attempt to change

the algorithm in order to better accommodate situations like this either through adding additional

terms into the PACOH model or to change the PAC-Bayesian bounds. Both of these methods would

require further assumption on the test environment and the type of distribution shift.

55

Figure 12: PACOH-NN-SVGD in distribution shift environment

56

5 Conclusion

In conclusion, meta-learning is a rapidly growing field with various architectures and approaches.

This essay explored the field through a PAC-Bayesian lens, which provides probabilistic guarantees

on the performance of certain algorithms, with a focus on supervised few-shot-learning. The essay

initially examined different approaches to meta-learning, with a particular emphasis on optimisation-

based algorithms like MAML and REPTILE. It then proceeded to develop the general supervised

PAC-bounds and extend it to meta-learning. The developed techniques not only provide a rigorous

theory but can also derive modern optimisation-based algorithms, showcasing the universality of the

PAC-Bayesian meta-learning framework. The PACOH algorithm, a state-of-the-art meta-learning

algorithm, was presented, and numerical experiments demonstrated its behaviour and effectiveness.

Overall, the essay shows that PAC-Bayesian meta-learning provides a powerful and flexible framework

for developing robust and efficient meta-learning algorithms.

57

References

[1] Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational approxi-

mations of Gibbs posteriors. 2015. arXiv: 1506.04091 [stat.ML].

[2] Ron Amit and Ron Meir. Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes

Theory. 2019. arXiv: 1711.01244 [stat.ML].

[3] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. 2019.

arXiv: 1810.09502 [cs.LG].

[4] Carlo Baldassi et al. “Learning through atypical phase transitions in overparameterized neural

networks”. In: Physical Review E 106.1 (July 2022). doi: 10.1103/physreve.106.014116.

url: https://doi.org/10.11032Fphysreve.106.014116.

[5] Christopher M. Bishop and Michael E. Tipping. “Variational Relevance Vector Machines”. In:

In Uncertainty in Artificial Intelligence 2000. Boutilier and M. Goldszmidt, 2000, pp. 46–53.

url: https://www.miketipping.com/papers/Bishop-VRVM-UAI-00.pdf.

[6] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. “Variational Inference: A Review for

Statisticians”. In: Journal of the American Statistical Association 112.518 (Apr. 2017), pp. 859–

877. doi: 10.1080/01621459.2017.1285773. url: https://doi.org/10.10802F01621459.

2017.1285773.

[7] Olivier Cantoni. “Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical

Learning”. In: IMS Lecture Notes Monograph Series 56 (2007), pp. 1–163. doi: 10.1214/

074921707000000391. url: https://arxiv.org/abs/0712.0248.

[8] Francesco D’Angelo, Vincent Fortuin, and Florian Wenzel. On Stein Variational Neural Network

Ensembles. 2021. arXiv: 2106.10760 [cs.LG].

[9] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805. url: http://arxiv.

org/abs/1810.04805.

[10] Nan Ding et al. “Bridging the Gap Between Practice and PAC-Bayes Theory in Few-Shot

Meta-Learning”. In: CoRR abs/2105.14099 (2021). arXiv: 2105.14099. url: https://arxiv.

org/abs/2105.14099.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast

Adaptation of Deep Networks”. In: CoRR abs/1703.03400 (2017). arXiv: 1703.03400. url:

http://arxiv.org/abs/1703.03400.

[12] Klemens Niklas Floege. Meta-Learning: A PAC-Bayesian Perspective. Version 1.0. May 2023.

url: https://github.com/kf416/Part-III-essay-meta-learning.git.

[13] Vincent Fortuin. Priors in Bayesian Deep Learning: A Review. 2022. arXiv: 2105.06868

[stat.ML].

[14] Vincent Fortuin, Heiko Strathmann, and Gunnar Rätsch. Meta-Learning Mean Functions for

Gaussian Processes. 2020. arXiv: 1901.08098 [stat.ML].

[15] Marta Garnelo et al. Neural Processes. 2018. arXiv: 1807.01622 [cs.LG].

58

https://arxiv.org/abs/1506.04091
https://arxiv.org/abs/1711.01244
https://arxiv.org/abs/1810.09502
https://doi.org/10.1103/physreve.106.014116
https://doi.org/10.11032Fphysreve.106.014116
https://www.miketipping.com/papers/Bishop-VRVM-UAI-00.pdf
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.10802F01621459.2017.1285773
https://doi.org/10.10802F01621459.2017.1285773
https://doi.org/10.1214/074921707000000391
https://doi.org/10.1214/074921707000000391
https://arxiv.org/abs/0712.0248
https://arxiv.org/abs/2106.10760
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2105.14099
https://arxiv.org/abs/2105.14099
https://arxiv.org/abs/2105.14099
https://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://github.com/kf416/Part-III-essay-meta-learning.git
https://arxiv.org/abs/2105.06868
https://arxiv.org/abs/2105.06868
https://arxiv.org/abs/1901.08098
https://arxiv.org/abs/1807.01622

[16] Pascal Germain et al. A New PAC-Bayesian Perspective on Domain Adaptation. 2016. arXiv:

1506.04573 [stat.ML].

[17] Pascal Germain et al. PAC-Bayesian Theory Meets Bayesian Inference. 2017. arXiv: 1605.

08636 [stat.ML].

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.

org. MIT Press, 2016.

[19] Benjamin Guedj. A Primer on PAC-Bayesian Learning. 2019. arXiv: 1901.05353 [stat.ML].

[20] Timothy Hospedales et al. Meta-Learning in Neural Networks: A Survey. 2020. arXiv: 2004.

05439 [cs.LG].

[21] Mike Huisman, Jan N. van Rijn, and Aske Plaat. “A survey of deep meta-learning”. In: Artificial

Intelligence Review 54.6 (Apr. 2021), pp. 4483–4541. doi: 10.1007/s10462-021-10004-4.

url: https://doi.org/10.10072Fs10462-021-10004-4.

[22] Laurent Valentin Jospin et al. “Hands-On Bayesian Neural Networks—A Tutorial for Deep

Learning Users”. In: IEEE Computational Intelligence Magazine 17.2 (May 2022), pp. 29–48.

doi: 10.1109/mci.2022.3155327. url: https://doi.org/10.11092Fmci.2022.3155327.

[23] Taesup Kim et al. Bayesian Model-Agnostic Meta-Learning. 2018. arXiv: 1806.03836 [cs.LG].

[24] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2022. arXiv: 1312.

6114 [stat.ML].

[25] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate Uncertainties for Deep

Learning Using Calibrated Regression. 2018. arXiv: 1807.00263 [cs.LG].

[26] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-level concept

learning through probabilistic program induction”. In: Science 350.6266 (2015), pp. 1332–1338.

doi: 10.1126/science.aab3050. eprint: https://www.science.org/doi/pdf/10.1126/

science.aab3050. url: https://www.science.org/doi/abs/10.1126/science.aab3050.

[27] Qiang Liu and Dilin Wang. Stein Variational Gradient Descent: A General Purpose Bayesian

Inference Algorithm. 2019. arXiv: 1608.04471 [stat.ML].

[28] Samuel Madden. Intel Lab Data. 2004. url: http://db.csail.mit.edu/labdata/labdata.

html.

[29] Matthias Minderer et al. Revisiting the Calibration of Modern Neural Networks. 2021. arXiv:

2106.07998 [cs.LG].

[30] Alex Nichol, Joshua Achiam, and John Schulman. “On First-Order Meta-Learning Algorithms”.

In: CoRR abs/1803.02999 (2018). arXiv: 1803.02999. url: http://arxiv.org/abs/1803.

02999.

[31] Anastasia Pentina and Christoph H. Lampert. A PAC-Bayesian bound for Lifelong Learning.

2014. arXiv: 1311.2838 [stat.ML].

[32] Antoine Picard-Weibel and Benjamin Guedj. On change of measure inequalities for f-

divergences. 2022. arXiv: 2202.05568 [stat.ML].

59

https://arxiv.org/abs/1506.04573
https://arxiv.org/abs/1605.08636
https://arxiv.org/abs/1605.08636
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1901.05353
https://arxiv.org/abs/2004.05439
https://arxiv.org/abs/2004.05439
https://doi.org/10.1007/s10462-021-10004-4
https://doi.org/10.10072Fs10462-021-10004-4
https://doi.org/10.1109/mci.2022.3155327
https://doi.org/10.11092Fmci.2022.3155327
https://arxiv.org/abs/1806.03836
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1807.00263
https://doi.org/10.1126/science.aab3050
https://www.science.org/doi/pdf/10.1126/science.aab3050
https://www.science.org/doi/pdf/10.1126/science.aab3050
https://www.science.org/doi/abs/10.1126/science.aab3050
https://arxiv.org/abs/1608.04471
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
https://arxiv.org/abs/2106.07998
https://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1803.02999
https://arxiv.org/abs/1311.2838
https://arxiv.org/abs/2202.05568

[33] “Predicting In-Hospital Mortality of ICU Patients: The PhysioNet/Computing in Cardiology

Challenge 2012”. In: Computing in Cardiology. 2012. url: https://physionet.org/content/

challenge-2012/1.0.0/.

[34] Yunxiao Qin et al. “Rethink and Redesign Meta learning”. In: ArXiv abs/1812.04955 (2018).

[35] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine

Learning. Boston: The MIT Press, 2006.

[36] Sachin Ravi and Hugo Larochelle. “Optimization as a Model for Few-Shot Learning”. In:

International Conference on Learning Representations. 2017. url: https://openreview.net/

forum?id=rJY0-Kcll.

[37] Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows.

2016. arXiv: 1505.05770 [stat.ML].

[38] Jonas Rothfuss et al. Meta-Learning Reliable Priors in the Function Space. 2022. arXiv:

2106.03195 [cs.LG].

[39] Jonas Rothfuss et al. PAC-Bayesian Meta-Learning: From Theory to Practice. 2022. doi:

10.48550/ARXIV.2211.07206. url: https://arxiv.org/abs/2211.07206.

[40] Jonas Rothfuss et al. PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees. 2021.

arXiv: 2002.05551 [stat.ML].

[41] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: CoRR

abs/1409.0575 (2014). arXiv: 1409.0575. url: http://arxiv.org/abs/1409.0575.

[42] “SwissFEL: the Swiss X-ray free electron laser”. In: Applied Sciences 7.57 (2017), pp. 720–777.

doi: 10.3390/app7070720. url: https://www.dora.lib4ri.ch/empa/islandora/object/

empa:21160.

[43] S. Prince W. Zi L. S. Ghoraie. Few-Shot Learning and Meta-Learning — Tutorial. Accessed on

May 3, 2023. 2023. url: https://www.borealisai.com/research-blogs/tutorial-2-few-

shot-learning-and-meta-learning-i/.

[44] Mingzhang Yin et al. Meta-Learning without Memorization. 2020. arXiv: 1912.03820 [cs.LG].

60

https://physionet.org/content/challenge-2012/1.0.0/
https://physionet.org/content/challenge-2012/1.0.0/
https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=rJY0-Kcll
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/2106.03195
https://doi.org/10.48550/ARXIV.2211.07206
https://arxiv.org/abs/2211.07206
https://arxiv.org/abs/2002.05551
https://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://doi.org/10.3390/app7070720
https://www.dora.lib4ri.ch/empa/islandora/object/empa:21160
https://www.dora.lib4ri.ch/empa/islandora/object/empa:21160
https://www.borealisai.com/research-blogs/tutorial-2-few-shot-learning-and-meta-learning-i/
https://www.borealisai.com/research-blogs/tutorial-2-few-shot-learning-and-meta-learning-i/
https://arxiv.org/abs/1912.03820

List of Figures

1 Example of K = 2 shot N = 3 class animal image classification problem, Zi et al. [43] 3

2 Parameter update of θ with three tasks τi during training according to the inner loop

of the MAML algorithm illustrated visually. Figure taken from Finn et al. [11]. . . . 6

3 Overview Meta-Learning framework as presented in Rothfuss et al. [40] with envi-

ronment T , task distributions Di, target prior P , target posterior Q, dataset S, data

point z = (x, y), hyper-prior P and hyper-posterior Q 13

4 (a) standard Point estimate Neural Network. (b) and (c) are stochastic Neural

Networks, where (b) provides learns a probability distribution over nodes and (c) over

the weights of the network. This Figure was taken from Jospin et al. [22] 41

5 Experiment 1 training data . 47

6 Noisy sinusoids environment for four algorithms. Two test tasks were plotted with

red points representing the context samples and blue the test samples. (a) Vanilla

BNN (b) MAML (c) PACOH-NN-SVGD (d) PACOH-GP-MAP 48

7 Mean function h(x) for the sinc environment. The plot was generated for µ1 = (1, 3)

and µ2 = (−2,−2) . 49

8 Training loss of PACOH-NN-SVGD with respect to number of iterations during

training in the Sinc environment. 50

9 The shaded region in all the plots represents the mean with added/subtracted standard

deviation of the obtained values. (a) and (b): average RMSE and calibration error

respectively with respect to number of hyper-posterior particles. (c) and (d): average

RMSE and calibration error respectively with respect to number of posterior particles 53

10 The shaded region in all the plots represents the mean with added/subtracted standard

deviation of the obtained values. (a) average RMSE with respect to number of meta-

train iterations (b) calibration error with respect to number of meta-train iterations 54

11 The shaded region in all the plots represents the mean with added/subtracted standard

deviation of the obtained values. (a) average RMSE with respect to number of context

samples (b) calibration error with respect to number of context samples 55

12 PACOH-NN-SVGD in distribution shift environment 56

61

A Appendix

A.1 Relevant Definitions and Inequalities

Definition A.1 (sub-Gaussian random variables) A random variable X with E(X) = 0 is

sub-Gaussian with parameter σ2 if

E[etX] ≤ et2σ2/2 (154)

for every t ∈ R

Definition A.2 (sub-Gamma random variables) A random variable X with E(X) = 0 is sub-

Gamma with variance factor σ2 > 0 and scale parameter c > 0 if

lnE[etX] ≤ σ2t2

2(1− ct)
(155)

for every t ∈ [0, 1/c)

Theorem A.1 (Markov’s inequality) Let X be a non-negative random variable. Then for all

t > 0, we have

P(X ≥ t) ≤ E[X]

t
(156)

This can be extended by considering a non-negative non-decreasing function ϕ : R → R to the

following

P(X ≥ t) = P(ϕ(X) ≥ ϕ(t)) ≤ E[ϕ(X)]

ϕ(t)
(157)

Theorem A.2 (Jensen’s inequality) Let X be a random variable and ψ a convex function, then

ψ(E[X]) ≤ E[ψ(X)] (158)

if ψ is a concave function, then

E[ψ(X)] ≤ ψ(E[X]) (159)

Theorem A.3 (Hoeffding’s inequality) Let X1, ..., Xn be independent sub-Gaussian random

variables, with Xi having sub-Gaussian parameter σ2i , for i ∈ {1, ..., n}. Then X̄ = n−1
∑n

i=1Xi is

sub-Gaussian with parameter σ̄2/n, where σ̄2 = n−1
∑n

i=1. In particular,

P(X̄ ≥ x) ≤ e−nx2/(2σ̄2
(160)

for every x ≥ 0.

Lemma A.4 (Hoeffding’s lemma) Let X be a random variable taking values in a bounded interval

[a, b]. Then X is sub-Gaussian with parameter (b− a)2/4. This gives

E
[
eλ(X−E)

]
≤ exp

(
λ2(b− a)2

8

)
(161)

62

A.2 PACOH Algorithm Details

The three inference methods MAP, SVGD and VI and their respective initialisation and update

rules.

Approximating Distribution Init Approx Inference

MAP Q̃ = δ(ϕ̃) ϕ̃ ∼ P
SVGD Q̃ = 1

K

∑K
k=1 δ(ϕ̃), ϕ̃̃ϕ̃ϕ = [ϕ̃1, .., ϕ̃k]

T ϕ̃ ∼ P, k = 1, ..,K

VI Q̃ = N (µQ, σ
2
Q, v = (µQ, σ

2
Q) v = (µQ, σ

2
Q)

Sample prior Params Init Approx Inference

MAP ϕ← ϕ̃ ϕ̃← ϕ̃+ η∇ϕ lnQ∗(ϕ̃)

SVGD ϕk ← ϕ̃k ϕ̃ϕϕ← ϕ̃ϕϕ+ ηKKK∇ϕ lnQ∗ +∇ϕKKK

VI ϕk ← µQ + σQ ◦ ϵ, ϵ ∼ N (0, III) v ← v + η
K

∑K
k=1∇v

[
lnQ∗(ϕk)− ln Q̃v(ϕk)

]
A.3 Log-Sum-Exp Operator

The Log-Sum-Exp (LSE) is effective in normalising vectors of log probabilities. In order to see this

consider the following.

y = ln

(
N∑

n=1

expxn

)

ey =
N∑

n=1

expxn

= ec
N∑

n=1

exp(xn − c)

y = c+ ln

(
N∑

n=1

exp(xn − c)

)

This holds for an arbitrary constant c ∈ R. If c = max{x1, ..., xn} is chosen we can ensure that the

largest positive exponentiated term is e0 = 1.

63

	Introduction
	Common Concerns and Approaches to Meta-Learning
	Optimisation-Based Meta-Learning

	Meta Learning in the PAC-Bayesian Framework
	Introduction to PAC-Bayesian Bounds
	PAC-Bayesian Meta-Learning Bounds
	Proof of Theorem 2.3
	Proof of Corollary 2.4
	Proof of Proposition 2.5

	Optimisation-Based Meta-Learning Revisited in the PAC-Bayesian Framework
	Derivation of MAML and REPTILE

	The PACOH Algorithm
	Approximating the PACOH
	Meta-Learning Gaussian Process Priors
	Meta-Learning Bayesian Neural Network Priors
	Discussion

	Numerical Experiments
	Conclusion
	Appendix
	Relevant Definitions and Inequalities
	PACOH Algorithm Details
	Log-Sum-Exp Operator

