
Data Acquisition with the
Spectrum M4i.4420-x8 Digitizer

Klemens Flöge, Nicolas Schmid and
Quentin Bordier
Group Project HS2021
16.12.2021, Zürich

1

Motivation:

• Data acquisition and data processing
are often done separately, which can
be time consuming

• Short experiments can generate huge
amounts of data if not no real-time
processing is done

• Oscilloscopes/FPGAs are expensive
and not very flexible

Objectives:

• Learn to operate the Spectrum digitizer

• Developing real time data processing on
the GPU

• Explore different functionalities of the
Spectrum card

• Use the card in a real experiment

2

Spectrum Card
- Card overview
- SCAPP
- SCAPP applications
- Software overview
- Setup

3

Introduction to the Spectrum M4i.4420-x8 Digitizer

Main used ports :
• 2 input channels
• external trigger

Main Features :
• The card is connected to a PCIe slot.
• 250MS/s with 16 bit resolution
• 500MS/s with 14 bit resolution
• Programmable input impedances,

amplification and filter

4

SCAPP

SCAPP allows us to send directly the data from the digitizer to the GPU

5

4GB4GB

SCAPP Applications

Ideal for signal processing applications such as:

− Data conversion
− Digital filtering
− Averaging
− Fast Fourier Transforms (FFTs)

https://www.nti-audio.com/portals/0/pic/news/FFT-Time-Frequency-View-540.png 6

Software Overview:

7

RDMA (Remote Direct Memory
Access) between not possible
between PCIe Cards and Nvidia
GPU on any Windows OS

Set Up

The following steps were required for the setup :
• OS installation
• Drivers Installation:
− Spectrum drivers
− SCAPP drivers
− GPU Driver

• Coding environment:
− Visual Studio Code

https://icon-icons.com/icon/file-type-vscode/130084
https://www.osboxes.org/wp-content/uploads/2018/04/ubuntu-server-desktop-post.png 8

https://icon-icons.com/icon/file-type-vscode/130084
https://www.osboxes.org/wp-content/uploads/2018/04/ubuntu-server-desktop-post.png

Programming the Card
- GPU
- CUDA
- Spectrum
- Memory
- Averaging and FFT’s

9

Graphic Processing Unit (GPU)

10
https://upload.wikimedia.org/wikipedia/commons/a/af/Software-Perspective_for_thread_block.jpg

CUDA Kernels: the road to multi-threading

• Kernels are used to access the thousands of processing cores within a GPU
• This is done via kernels in the CUDA programming API
• Example of a kernel which adds two data vectors:

__global__ void vecAdd(float *a, float *b)

 {

 // Get our global thread ID

 int id = blockIdx.x*blockDim.x+threadIdx.x;

 // Make sure we do not go out of bounds

 a[id] = a[id] + b[id];

 }

11

Executing a Kernel in CUDA

Example of a Kernel call:

• Number of Operations = Number of blocks * Number of Threads per Block

• lSegmentSize: size of data vector ~ Number of Operations

• number_of_threads: number of threads per block

• Code:

vecAdd<<<lSegmentSize / number_of_threads, number_of_threads>>> ((float*)a, (float*)b);

12

Number of Blocks Number of Threads per Block

The Spectrum API

The spectrum card is coded through a few functions, namely :

• spcm_dwSetParam_i32();

• spcm_dwGetParam_i32();

• spcm_dwDefTransfer_i64();

The functions work by changing the value of registers within the card. The registers are all defined in the manual.

13

Register Definition in the Manual

spcm_dwSetParam_i32(hDevice, SPC_M2CMP, M2CMD_CARD_START)

14

Register Register value

Data Acquisition:

Segment of n samples to
process

Part of the signal containing unnecessary information

Trigger event

Trigger level (software trigger)

15

Time

Signal

Flow graph of our Program

16

Averaging to reduce noise

 Noise measured with 1 segment Noise averaged with 100 segments

17

0 8 16 24 32 0 8 16 24 32
 Time in μs Time in μs

Vo
lta

ge
 in

 V
ol

t

Vo
lta

ge
 in

 V
ol

t

The Pump-Probe Experiment

18

External Trigger channel Channel 0

External Triggering on Spectrum Device

• Set the input resistance of the trigger:
spcm_dwSetParam_i32 (hCard, SPC_TRIG_TERM, 1); // 1 is for 50 Ohm termination

• Set the level of the trigger:
spcm_dwSetParam_i32 (hCard, SPC_TRIG_EXT0_LEVEL0, ext_trig_level);
tri

gg
er

 s
ig

na
l i

n
Vo

lt

19

 0 8 16 24 32
 Time in μs

Results
Plots show voltage of reflected probe signal in photodiode: this is proportional to the reflectivity of the
SESAM sample

20

 0 8 16 24 32 40 0 8 16 24 32 40
 Time in μs Time in μs

Fluence: 0.2 mJ/cm²m^2 Fluence: 3mJ/cm²m

S
ig

na
l i

n
Vo

lts

S
ig

na
l i

n
Vo

lts

Thanks for your attention, Merry
Christmas and a Happy New Year

https://media.cooperation.ch/images/2020/11/09/134704145-5e2adeea-12d4-440e-ab17-8520076e0d55.jpg 21

Summary

• Setup and Hardware
− Software setup
− Overview SCAPP

• Programming
− Spectrum API
− Cuda Toolkit

• Experimental results
− Experiment

• Outlook
− can be used for virtually any data processing

task which involves a lot of data

22

Experimental results:

SCAPP overview:

Main Loop:

while (qwTotalMem < qwToTransfer){

 if ((dwError = spcm_dwSetParam_i32 (hCard, SPC_M2CMD, M2CMD_DATA_WAITDMA)) !=
ERR_OK){

 if (dwError == ERR_TIMEOUT)

 printf ("\n... Timeout\n");

23

else{ //if no problem with the DMA transfer

//available user storage in the Card

spcm_dwGetParam_i32 (hCard,
SPC_DATA_AVAIL_USER_LEN, &lAvailUser); //absolute
position of the data in the card

spcm_dwGetParam_i32 (hCard,
SPC_DATA_AVAIL_USER_POS, &lPCPos);

if (lAvailUser >= lNumByteInSegment){

//takes count of how much data we already received to
know when to stop qwTotalMem += lNumByteInSegment;

//put the data on the GPU

cudaMemcpy (pvBuffer_gpu, (char*)pvDMABuffer_card +
lPCPos, lNumByteInSegment,
cudaMemcpyHostToDevice);

//scale the input data (form a int16 value to mV)

Scale<<<lSegmentSize /
number_of_threads,number_of_threads>>>
((int16*)pvBuffer_gpu, lIR,
lMaxADCValue,(float*)gpu_buff_b);

//Addition of buffer "a" with the scaled data

vecAdd<<<lSegmentSize /
number_of_threads,number_of_threads>>>
((float*)gpu_buff_a, (float*)gpu_buff_b);

counter += 1;

if(counter== Num_seg){

break; }

// now the processed data is in the host memory and can
be processed further, //e.g. written to disk

// mark the segment as processed

spcm_dwSetParam_i32 (hCard,
SPC_DATA_AVAIL_CARD_LEN, lNumByteInSegment);

24

FFT Code:

 cudaMalloc(&data, NumFFTsamples *
sizeof(cufftComplex));

 if (cudaGetLastError() != cudaSuccess){

 fprintf(stderr, "Cuda error: Failed to allocate\n");

return;

}

 if (cufftPlan1d(&plan, lSegmentSize, CUFFT_R2C, BATCH)
!= CUFFT_SUCCESS){

 fprintf(stderr, "CUFFT error: Plan creation failed");

 return;

}

// here the FFT is performed

 if (cufftExecR2C(plan, (cufftReal*)gpu_buff_a,
data) != CUFFT_SUCCESS){

 fprintf(stderr, "CUFFT error: ExecC2C
Forward failed");

 return;

}

if (cudaDeviceSynchronize() != cudaSuccess){

 fprintf(stderr, "Cuda error: Failed to
synchronize\n");

 return;

}

25

External Trigger specifications :

• different input resistances, for different input ranges of Trigger signal:
− 1kΩ : Full Scale range is ±10V = 20V total
− 50Ω : Full Scale range is ±2.5V total

• minimum requirement for height of input signal: 2.5% of Full Scale range

26

2727

Set parameters for the card

CUDA kernel
implementation

Start the card Wait for trigger
write signal
segment to
buffer

send to GPU
and erase
buffer

average on GPU

Optional: FFT on
the averaged
segments

send to host and plot

Trigger event

If buffer is full

Main loop

Variables and
functions
configuration

Block diagram of
the program

Graphic Processing Unit (GPU)

• GPU’s consists of thousands of processing cores

• Threads: smallest sequence of programmed instructions
that can be managed independently by a scheduler

• to maximise parallelisation of tasks, the GPU groups
threads together in so called blocks.

• The computational power of the device is the arranged in a
grid of these blocks.

https://www.researchgate.net/figure/CUDA-programming-grid-of-thread-blocks-Source-NVIDIA_fig3_328752788 28

