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Abstract

Recent advancements in the production of general hexagonal Boron Nitrate (hBN) freeforms

on microscopic scales allow for their introduction into micro-cavities to manipulate the elec-

tric field distribution within them. The flexibility of creating arbitrary shapes of hBN could

result in a new generation of optical micro-cavities. As this procedure was still relatively

new at the beginning of the project is was not yet clear what shapes would lead to which

electric field distributions. The goal of this project was to build numerical models, which

could simulate hBN lens shapes inside Fabry-Pérot cavities and analyse the corresponding

electric field distributions. At first a simulation software was used to first replicate existing

models of plane-parallel Fabry-Pérot cavities. The further analysis build a number of mod-

els to examine the resulting electric field distributions from different curvatures of a single

hBN lens and multiple lenses that were introduced to a plane-parallel Fabry-Pérot cavity.

A variety of interesting features in the resulting distributions could be found, such as the

dependence of the transverse confinement on the curvature of the lens. The behaviour of

the system through the introduction of multiple lenses could also be analysed. In conclu-

sion the existing models can be used to model simple lenses of hexagonal Boron Nitrate

inside plane-parallel Fabry-Pérot cavities and allow researchers to start investigating more

arbitrary shapes and forms.
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1 Introduction

Fabry-Pérot Cavities are optical devices which consist of two plane-parallel mirrors. These

are of great importance to modern optics and a key enabling technology to quantum sci-

ence. Nanophotonics is the study of the electromagnetic field in dielectric materials on

scales comparable to its wavelength. Cavities are a key experimental tool in this research

discipline, as they allow the trapping and manipulation of light on microscopic scales by

creating resonant modes, which are localised in the cavity. This is especially interest-

ing in the analysis of nanoscale objects such as quantum dots. The effects of placing a

quantum dot in a general electromagnetic field are usually quite insignificant. However,

”for a smaller and smaller cavity, these resonant modes couple more and more strongly

to a single nanoscale object inside it.” [11]. It is therefore important for researchers in

nanophotonics to understand how the electromagnetic field can be manipulated inside a

micro-cavity. The modification of an hexagonal Boron Nitrate (hBN) profile inside the cavity

changes the spatial distribution of the relative permittivity, which in turn changes the distri-

bution of the electromagnetic field inside the cavity.

Plane-parallel Fabry-Pérot cavities create a longitudinal confinement of the electromag-

netic field. The longitudinal confinement reduces the dimensions of free movement for

the photons from three to two. Thus plane-parallel Fabry-Pérot cavities are also referred

to as two dimensional cavities. In order to manipulate the photon field further transverse

confinement is introduced. If the transverse confinement ’restricts’ the movement of pho-

tons in both directions in the transverse plane the number of free movement dimensions is

effectively reduced to zero. This would then be referred to as a zero-dimensional Fabry-

Pérot cavity and will be the setup studied in this project. The starting point for this analysis

was the development of new production method for hexagonal Boron nitrate freeforms on

microscopic scales [27]. Using this new fabrication technique allows for the spatial modula-

tion of the effective refractive inside the cavity, which gives much greater command on the

electric field distribution as will be shown in this analysis. This approach to manipulating

the electromagnetic field inside a Fabry-Pérot cavity is much more flexible than existing

methods, such as plane-concave Fabry-Pérot cavities. A key difference is that existing

methods change the curvature of one or both of the mirrors, which gives the setup two

tuning parameters for the transverse confinement. The new hBN freeform method allows

for arbitrary shapes to be created which gives scientists much more flexibility in designing
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1 Introduction

a desired electromagnetic field distribution within the cavity.

This project is meant to provide a starting ground for researchers, who wish to place differ-

ent shapes and forms of hBN inside a Fabry-Pérot cavity to study their optical behaviour.

The main goals of this analysis will be to use the COMSOL Multiphysics© simulation soft-

ware to first replicate existing models of Fabry-Pérot cavities. In a next step an hBN lens

will be introduced to the system to study its effect on the electric field distribution and repli-

cate some of the experimental data gathered by researchers. In a final step multiple hBN

lenses are introduced to investigate their interference and start off the analysis of general

freeform hBN structures in Fabry-Pérot cavities.

This bachelor thesis was completed in the Quantum Photonics Group, Department of

Physics at the Swiss Federal Institute of Technology Zürich. The academic advisors were

Deepankur Thureja and Dr. Puneet Murthy while the supervision was done jointly by Prof.

Dr. Atac Imamoglu and Prof. Dr. Klaus Ensslin

2



2 Theory on optical micro-cavities

In this chapter some of the basics in electromagnetic theory, Fabry-Pérot cavities and

photon confinement will be discussed. The aim of this project was to build numerical simu-

lations for new types of zero dimensional cavities. The experimental data to verify most of

the numerical models is yet to be recorded, thus discussing the theory behind the simula-

tions is all the more important. Readers who are more familiar with electromagnetic fields

may feel free to skip the section 2.1.

2.1 Basics of electromagnetic fields

In order to understand how the electromagnetic field can be manipulated inside a Fabry-

Pérot cavity a few key concepts of electromagnetic fields in general are reviewed in this

section. Their behaviour is governed by equations written first in rigorous mathematical

form by James Clerk Maxwell during the 19th century in this groundbreaking paper [5].

The equations were than later compacted into the four equations known today by Oliver

Heaviside and others. Here the letters E⃗, H⃗ denote the electric and magnetic fields re-

spectively and j⃗free the electric current density. Maxwell’ equations [25]:

∇ × H⃗ = j⃗free + ∂

∂t
D⃗ (2.1)

∇ × E⃗ = − ∂

∂t
B⃗ (2.2)

∇ · D⃗ = ρfree (2.3)

∇ · B⃗ = 0 (2.4)

The electric and magnetic field ⃗E,H are related to the electric displacement D⃗ and mag-

netic intensity B⃗ through the following constitutive relations:

D⃗(r, t) = ϵ E⃗(r, t) (2.5)
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2 Theory on optical micro-cavities

B⃗(r, t) = µ H⃗(r, t) (2.6)

Where ϵ is the electric permittivity and µ the magnetic permeability. The following assump-

tions and there justification underlie the equations above and the analysis of the cavities in

this project. These were taken from [26]:

• Isotropic medium: The electric permittivity and magnetic permeability are identical in

all directions of the medium, leading to the constitutive relations in equations 2.5 and

2.6.

• Linearity : Optical non-linearites encountered in the materials considered in this project

are small enough to be treated perturbatively.

• Frequency independence: The frequency independence of the refractive index n or

the electric permittivity ϵ can be justified since the operation of the optical resonators

is done in a narrow frequency range where the permittivity is nearly constant.

• Source free: The cavity considered does not possess any current injection system,

so j⃗free = 0 in 2.1.

The last assumption was made for the cavities considered in this project. The electric

permittivity ϵ = ϵ0ϵr and magnetic permeability µ = µ0µr can be written as a product of

their value in a vacuum and a material dependent relative component. During this project

the relative magnetic permeability was assumed as µr = 1. The values of these quantities

in a vacuum ϵ0, µ0 are fundamental constants in physics. Their values in vacuum in SI

units are the following:

µ0 = 4π × 10−7Hm−1 (2.7)

ϵ0 = 1
µ0c2 (2.8)

Where c is the speed of light in a vacuum.

In a cavity setup a laser beam propagates through the system. Light in general is de-

scribed as an electromagnetic wave and thus governed by Maxwell’s equations. In order

to better understand possible solutions to Maxwell’s equations the wave equation will be

derived, this derivation was mainly taken from [29]. As listed in the fourth assumption the

electric current density j⃗free = 0 is considered to be zero. The constitutive relations with

the respective constants can be substituted in the first equation 2.1 which then takes the
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2 Theory on optical micro-cavities

following form.

∇ × B⃗ = 1
c2
∂

∂t
E⃗ (2.9)

If the rotation operator is applied to both sides of the equation 2.2:

∇ × ∇ × E⃗ = ∇ ×
(

− ∂

∂t
B⃗

)
(2.10)

∇ × ∇ × E⃗ = − ∂

∂t

(
∇ × B⃗

)
(2.11)

Equation 2.9 is used to substitute for ∇ × B⃗ to obtain:

∇ × ∇ × E⃗ = − 1
c2
∂2

∂t2
E⃗ (2.12)

The derivation of the wave equation is almost complete. Finally only an identity from vector

calculus is needed. For any differentiable vector field v⃗ : U ⊂ R3 → R3 the following holds:

∇ × ∇ × v⃗ = ∇(∇ · v⃗) − ∇2v⃗ (2.13)

If the identity 2.13 is used in 2.12 to obtain the wave equation [36]:

∇2E⃗ − 1
c2
∂2

∂t2
E⃗ = 0 (2.14)

In order to solve this partial differential equation in three dimensional space a standard

separation of variables ansatz is used. The electric field vector E⃗ is separated as follows:

E⃗(r, t) = R⃗(r)T (t) (2.15)

Inserting this separation into the wave equation 2.14:

∇2R⃗(r)T (t) − R⃗(r)
c2

∂2T (t)
∂t2

= 0 (2.16)

Which can also be written as the following through dividing by R⃗(r)T (t) and multiplying by

c2:
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2 Theory on optical micro-cavities

c2 ∇2R⃗(r)
R⃗(r)

= 1
T (t)

∂2T (t)
∂t2

(2.17)

As usual in the separation of variables ansatz to solve partial differential equations, it can

be seen that both sides of the equation depend on different variables. This means that

both sides need to be constant. That constant is now set to equal −ω2. As a result two

new differential equations are obtained, where the space r⃗ = (x, y, z) and time t variables

are separated:

∂2T (t)
∂t2

+ ω2T (t) = 0 (2.18)

∇2R⃗(r) + ω2

c2 R⃗(r) = 0 (2.19)

The first equation 2.18 is a ordinary linear second order differential equation whose solu-

tions are given by:

T (t) = c1cos(ωt) + c2sin(ωt) = Re{c exp(−iωt)} (2.20)

c1 and c2 are real constant whereas c is complex. Substituting this expression into the

ansatz 2.15:

E⃗(r, t) = R⃗(r)T (t) = R⃗(r)Re{c exp(−iωt)} = Re{c R⃗(r)exp(−iωt)} (2.21)

Then define the complex field amplitude is defined as c · R⃗(r) and written E⃗(r) = c · R⃗(r).
The Electric field vector can then be expressed as:

E⃗(r, t) = Re{E⃗(r)exp(−iωt)} (2.22)

If this expression is now inserted into equation 2.19 the Helmholtz Equation is obtained.

∇2E⃗(r) + k2E⃗(r) = 0 (2.23)

,with k = ω/c [29].
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2 Theory on optical micro-cavities

2.1.1 Plane Waves

A particularly simple solution to the Helmholtz equation 2.23 is the plane wave. Plane

waves were important in this project as plane-parallel Fabry-Pérot cavities can be solved

numerically very well if the incident light is described by a plane wave. This solution can

be obtained by using the following ansatz:

E⃗(r) = E⃗0(r)e±k⃗·r⃗ = E⃗0(r)e±(kxx+kyy+kzz) (2.24)

If this ansatz is substituted into the Helmholtz equation 2.23 the following dispersion rela-

tion is obtained:

k2
x + k2

y + k2
z = ω2

c2 (2.25)

The solution is the given by:

E⃗(r, t) = Re{E⃗0e
±ik⃗·r⃗−iωt} (2.26)

In order for this to be a rigorous solution to Maxwell equations in free space the electric

field needs to be divergence free. ∇· E⃗ = 0. This restricts the k-vector to be perpendicular

to the electric field vector, k⃗ · E⃗0 = 0.

Plane waves are of particular importance to this project as they present the simplest solu-

tion to the Helmholtz equation and are used in many modelling techniques.

2.2 Gaussian beams

In Fabry-Pérot cavities a laser beam is shining into the system. The Gaussian beam so-

lution to the Helmholtz equation is a very useful one in describing compact laser beams,

which is why they will be discussed here. The models implemented in the later stages of

the project all used ideal Gaussian beams.

E⃗(x′, y′, 0) = E⃗0e
− x′2+y′2

ω2
0 (2.27)

Here E⃗0 is a constant field vector in the transverse xy-plane. The beam waist is chosen

to be at z = 0 and its radius is given by ω0. Through using some tools from Fourier anal-

ysis and the paraxial approximation the full solution E⃗(x, y, z) in three dimensional space

is obtained. The derivation was not directly relevant to this project and will not be done.

Interested readers are referred to any standard introductory text on electromagnetic waves
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2 Theory on optical micro-cavities

and fields.

To gain a more intuitive understanding of the parameters involved the variable ρ2 = x2 +y2

and parameter z0 are introduced:

z0 = kω2
0

2 (2.28)

One obtains the following formula for a Gaussian beam [28].

E⃗(ρ, z) = E⃗0
ω0
ω(z)e

− ρ2

ω2(z) ei(kz−η(z)+k2ρ2/2R(z)) (2.29)

Where the following abbreviations were used:

• Beam waist: ω(z) = ω0(1 + z2/z2
0)1/2

• Wavefront radius: R(z) = z(1 + z2/z2
0)

• Phase correction: η(z) = arctan(z/z0)

The transverse beam width is commonly defined as the width at which the magnitude of

Gaussian field distribution decays to 1/e of its peak value.

Figure 2.1. Illustration of a Gaussian Beam [28]

The parameter z0 is also known as the Rayleigh Length. Depending on different values for

z, three main cases can be distinguished [13].

• z = 0. The beam waist is the given by ω(z) = ω0. At this point the beam waist

attains its minimum, for any z ̸= 0 the beam waist will be larger. As a result a

Gaussian beam’s minimal width is always at its focal point.

• When z = z0, the beam waist is given by ω(z) =
√

2ω0. The Rayleigh length marks a

turning point for the beam waist radius. For z < z0 the beam waist radius is assumed

to be approximately constant. For larger values of z, z > z0 the radius is increasing.
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2 Theory on optical micro-cavities

• For z >> z0 the beam waist radius almost expands linearly. This is indicated in

2.1 with the dashed lines. As the expansion is linear, the beam waist radius can be

written as ω(z) = θz. The value of θ is given by

θ = 2k
ω0

= λ

πω0

One could conjecture that the Rayleigh length is an arbitrarily chosen value. However there

is an intuitive reason for choosing this parameter. At z = z0, ω(z) =
√

2ω0, which means

that the cross section of the beam doubled at the Rayleigh length. For z < z0 the ray de-

scription of the propagation of light breaks down, as the paraxial approximation is no longer

feasible [13]. This means that the Rayleigh length is an important length scale to keep in

mind when trying to consider optical systems whose incident electromagnetic waves are

Gaussian beams. Some more investigation into the Rayleigh length was done in the later

stages of the project which is discussed in section 4.2.3.

In many physical situations it is often advantageous to include energy considerations into

the analysis. For this the term intensity will be introduced. In optical physics, the intensity I,

e.g. of a laser beam at some location, ”is generally understood to the optical power per unit

area, which is transmitted through an imagined surface perpendicular to the propagation

direction” [30]. An expression for the intensity of monochromatic waves 1 such as plane

waves or Gaussian beams is given by the following:

I = νpµ0µr

2 |E⃗|2 = cϵ0n

2 |E⃗|2 (2.30)

Taking the Gaussian beam into consideration one can write that the initial intensity I0 by

substituting E⃗0 into the formula above:

I0 = cϵ0n

2 |E⃗0|2

To then obtain a formula for the intensity along the Gaussian beam for given fixed beam

waist distribution. The variable z is fixed to a certain value so that the beam waist radius

ω(z) = ω is constant. Most of the energy resides within the beam waist radius ω, which

is what one would expect. The intensity profile in dependence of ρ is then given by the

following formula [16].

I(ρ) = I0 e
−2ρ2/ω2

(2.31)

In addition to the fundamental mode discussed above there also exist higher transverse

modes. The fundamental Gaussian mode is a solution to the paraxial Helmholtz Equation.

1A monochromatic wave is a field which oscillates in time at a fixed angular frequency
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2 Theory on optical micro-cavities

This partial differential equation is linear, so any combinations of spatial derivatives of

the fundamental mode are also solutions to the same differential equation [28]. The two

main families of higher order modes are the Hermite-Gaussian and Laguerre-Gaussian

modes. The former is typically encountered in rectangular cavity symmetries while the

latter can be observed in circular symmetries. This project was mainly concerned with

circular symmetries, which were rotation symmetric around the propagation direction of

the beam. As a result the Hermite-Gaussian modes will not be analysed further.

Higher order Laguerre-Gaussian modes can be obtained obtained from the following equa-

tion as pointed out by Zauderer [37]:

E⃗L
nm = knω2n+m

0 eikz ∂
n

∂zn

(
∂

∂x
+ i

∂

∂y

)m (
E⃗(x, y, z)e−ikz

)
(2.32)

The indices n,m are integers and the tuple (n,m) classifies the Laguerre-Gaussian mode.

Figure 2.2. A few higher order Laguerre-Gaussian modes [19]
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2 Theory on optical micro-cavities

2.3 Fabry-Pérot Cavities

The plane-parallel Fabry-Pérot setup is one of the simplest for realising optical micro-

cavities. The setup was invented by the two french physicists Charles Fabry and Alfred

Pérot at the end of the 19th century. ”A cavity confines the electromagnetic waves in three

dimensional space and determines its spectrum through its boundary conditions” [33]. The

setup consists of two parallel highly reflective mirrors whose separation can be adjusted.

Optical waves can only transit through both mirrors in a resonant mode of the cavity. This

is of great relevance as it allows to find resonant modes of the cavity through analysing

the transmission spectrum. An illustration of a plane-parallel Fabry-Pérot cavity is given in

Figure 2.3.

Figure 2.3. A singe beam entering the system creates interference of many beams [14]

Depicted in Figure 2.3 is a setup of two highly reflective mirrors at a separation d. Consid-

ering the entry of two successive beams to the system at an angle θ, the phase difference

between these two beams will be given by the difference in optical path lengths divided by

the wavelength and multiplied by 2π:

δ = 2π∆Optical Path Length
λ

= 4πd cos(θ) 1
λ

= 4πd cos(θ)f
c

(2.33)

Where the difference in optical path lengths is given by 2dcos(θ). The condition for an

interference maximum of two coherent beams is that the phase difference is an integer

multiple of 2π:

δ = 2πm , with m integer (2.34)

Considering two highly reflective mirrors and an incident beam. By introducing the quan-
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2 Theory on optical micro-cavities

tities of transmission, reflection and absorption coefficients(T ,R and A) one can write the

following equation:

T +R+A = 1 (2.35)

In this analysis the absorption will be assumed negligible, A = 0, so 2.35 turns into:

T +R = 1 (2.36)

If we now assume that on each encounter of the beam with the mirrors a portion of the

beam is reflected, as depicted in Figure 2.3. The reflectivity of the mirrors will be denoted

as R = r2 . The transmission through both mirrors will be written as T = t2. The following

expressions for the complex Amplitudes are obtained:

E1 = t2E0

E2 = E1r
2e−iδ

E3 = E2r
2e−iδ = E1r

4e−iδ

The phase difference between two neighbouring waves is written as δ. The ’bouncing’ of

the beam between the two mirrors as indicated in Figure 2.3 will continue indefinitely with

ever decreasing amplitudes. The total amplitude is then given by the infinite summation of

all of the individual amplitudes [14]:

E =
∞∑

i=0
Ei = E1

∞∑
n=0

r2(n−1)e−iδn = E1
1 − r2e−iδ

= t2
E0

1 − r2e−iδn
(2.37)

The fact that |R2(n−1)e−iδn| = |R2n| < 1, as R < 1 was used to simplify the above series

by applying the formula for Geometric Series. Using equation 2.22 the complex electric

field vector can be written as:

E = t2
E0

1 − r2e−iδn
e−iωt (2.38)

The real valued electric field vector is then obtained by taking the real part of the above

expression. In the further analysis of Fabry-Pérot cavity an important parameter to consider

are the intensities of the incoming, reflected and transmitted beam. The optical intensity

was defined in earlier in equation 2.30. Using this formula and substituting 2.38:

12



2 Theory on optical micro-cavities

Ii = cϵ0n

2 |E0|2 (2.39)

It = cϵ0n

2 |E|2 = cϵ0n

2 |E0|2 t2

(1 − r2cos(−δ))2 + (r2sin(−δ)) (2.40)

Simplifying the latter leads to the following expression.

It = Ii
t4

(1 + r4) − 2r2cos(δ) (2.41)

As the absorption is assumed to be zero, A = 0 , the incident energy flux density should

be the same as sum of the energies from the reflected and transmitted waves:

Ii = Ir + It (2.42)

Using Ir = Ii −It 2.42 and the trigonometric identity cos(δ) = 1−2sin2(δ/2) the following

equations can be obtained:

Ir = Ii
(2r/(1 − r2))2sin2(δ/2)

1 + (2r/(1 − r2))2sin2(δ/2) (2.43)

It = Ii
1

1 + (2r/(1 − r2))2sin2(δ/2) (2.44)

At this point it should be noted that 2.43 can be derived without the assumption in 2.42. In

fact the latter can be derived from the former. At this point Hecht’s analysis is referred to

the interested reader for more details in this derivation [17].

The equation 2.51 can be rewritten in the following forms:

It

Ii
= T 2

1 +R2 − 2Rcos(δ) (2.45)

It

Ii
=
(

T

1 −R

)2 1
1 + (4R/(1 −R2)2)sin2(δ/2) (2.46)

A maximum in the intensity of the transmitted wave 2.46 will occur if the denominator

is as small as possible. Therefore at maximum transmitted intensity one would expect

sin2(δ/2) = 0, in this case δ = 2πm and
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2 Theory on optical micro-cavities

(It)max = Ii and (Ir)min = 0

By applying the same kind of logic to equation 2.41 the minimum for the transmitted inten-

sity will be attained when cos(θ) = −1, which is the case for δ = (2m+ 1)π and yields the

following:

(It)min = Ii
(1 − r2)2

(1 + r2)2 (2.47)

(Ir)max = Ii
4r2

(1 + r2)2 (2.48)

Examining 2.44 and 2.43 closer it might make sense to introduce a new variable. This

quantity is known as the coefficient of finesse F and is defined as follows:

F =
( 2r

1 − r2

)2
(2.49)

The coefficient of finesse can now be substituted in equation 2.44 and 2.43 to obtain:

Ir

Ii
= Fsin2(δ/2)

1 + Fsin2(δ/2) (2.50)

It

Ii
= 1

1 + Fsin2(δ/2) (2.51)

The term
(
1 + Fsin2(δ/2)

)−1 = A(θ) is also known as the Airy Distribution [17].

It can be seen in Figure 2.4 that a higher coefficient of finesse leads to sharper peaks in

the Airy distribution.

Substitute the definition of the airy distribution and equation 2.51:

It

Ii
= A(θ) (2.52)

Another quantity of interest which is related to 2.49 is the Finesse, which is defined in the

following way:

F = π
√
F

2 (2.53)

To gain a better understanding of the concept of finesse the equation 2.53 is rewritten as
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2 Theory on optical micro-cavities

Figure 2.4. Illustration of the Airy function A(θ), which plots the ratio of the transmitted
intensity It to the incident intensity Ii in relation to the phaseshift δ [17]

F = 4
π2 F and then substituted into 2.51 to obtain:

It

Ii
= 1

1 + 4F2

π2 sin2(δ/2)
(2.54)

It can now be seen analytically in 2.54 that larger values of the finesse result in sharper

peaks in the It
Ii

vs. δ spectrum. To specify what is meant by ’sharpness’ the quantity

Full Width Half Maximum (FWHM) will be defined. This parameter will be evaluated by

determining:

It

Ii
= 1

2

Using equation 2.54 this condition translates into:

4F
π2 sin

2(δ/2) = 1 sin2(δ/2) = π2

4F
which results in

sin(δ/2) = ± π

2F
(2.55)

Since the peaks are expected to be rather sharp in a typical cavity the FWHM will be close

to the peak. Thus a new parameter ζ will be introduced with δ = 2πm + ζ. Since the

FWHM is close to the peak ζ will be small. This can now be substituted into to obtain [35]:
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± π

2F
= sin

(
πm+ ζ

2

)
= (−1)m sin

(
ζ

2

)

ζ is then given by

ζ = 2 arcsin
(

± π

2F

)

Expanding the arcsin using its Taylor series

ζ = 2
(

± π

2F
+ 1

6

(
± π

2F

)3
+ 3

8

(
± π

2F

)5
+ · · ·

)

Since ζ is small a linear approximation is adequate and the higher order terms can be

neglected, ζ = ± π
F . The FWHM is then given by 2|ζ| or 2π

F . From 2.33 it can be seen that

the spacing between successive peaks along the δ axis is given by 2π. Taking the ratio

between these two quantities results in the finesse.

Distance between two successive peaks
FWHM in single peak

= 2π
2π
F

= F (2.56)

This is the same finesse introduced almost in equation 2.53. Important to note is that a

high finesse results in a sharp peak in the It
Ii

vs. δ plot.

So far the main principles and characteristics of Fabry-Pérot cavities were discussed. In the

remaining part of the discussion of these fascinating setups the resonance is considered

through its dependency on frequency. Using the equations 2.33 and 2.46 the resonant

frequencies can be expressed as follows.

fm = m
c

2nd (2.57)

Where m is then called the longitudinal mode order [1]. The reason for the word longitudi-

nal is that the direction of confinement of the electric field is in parallel to the propagation

direction of the beams. This idea will be developed further in the later section 2.5. The

equation 2.57 can also be rewritten using the wavelength:

λm = 2nd
m

(2.58)

Similar to the distance between two successive peaks along the phaseshift δ axis one can

ask what is that separation of two successive resonant frequencies. This quantity is known
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as the Free Spectral Range (FSR)

∆fFSR = fm+1 − fm = c

2nd (2.59)

”Neglecting material dispersion and mirror penetration effects, the FSR is a constant factor

over the entire frequency range” [1]. The Finesse can then also be defined using the free

spectral range, which presents a nice analogy to 2.53 and 2.56.

F = ∆fFSR

FWHM at resonance peak
(2.60)

Another important quantity to consider when talking about optical cavities or resonators in

general is the quality Factor or Q-factor. This quantity corresponds to the average number

of rounds-trips made by a resonant photon before it leaves the cavtiy” [1]. For optical

cavities it can be expressed as the resonance frequency divided by the free spectral range:

Q = fresonance

∆fFSR
(2.61)

[31]. One should note that the Q-factor depends on the resonance frequency so this quan-

tity will not be constant over the spectrum of the cavity. Alternatively the Q-factor can

also be defined with respect to the frequency. First the free spectral range is defined with

respect to the wavelength:

∆λFSR = λm − λm+1 = 2nd
m(m+ 1) (2.62)

The Q-factor can then also be expressed with respect to the wavelength as follows:

Q = λresonance

∆λFSR
(2.63)

An illustration of the quantities Free Spectral Range, Full Width Half Maximum and Finesse

with respect to a transmission Plot is shown in Figure 2.5.

2.4 Distributed Bragg Reflectors

For the Fabry-Pérot cavities discussed above high reflectivity of the mirrors is desired. In

many physical experiments as well as in the simulations employed in this project distributed

Bragg reflectors (DBRs) were used as mirrors. A DBR or Bragg mirror is a mirror structure,
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Figure 2.5. Transmission plot of a Fabry-Pérot cavity where the Free Spectral Range, Full
Width Half Maximum and Finesse are shown [10]

which consists of repeating layers of two materials with high and low refractive indices

respectively. Since the layers alternate in high and low refractive indices, at every other

boundary there is a phase shift of π upon reflection from the interface. Hence, the quarter

wavelength spacing of the layers is appropriate to give constructive interference in the

reflected direction [24]. At vertical incidence the thickness of the high and low refractive

index layers dl,h is given by:

dl,h = λl,h

4 = λ0
4nl,h

(2.64)

Where nl and nh are the low and high refractive indices of the two materials [34] and λref is

the reference wavelength to which the DBRs are tuned. In this treatment of the DBR mirrors

and by extension of the Fabry-Pérot cavities the frequency independence of the refractive

indices is assumed. This assumption was made throughout the entirety of the project and

in all theoretical derivations as well as numerical models, as explained in subsection 2.1.

Typically only a relatively small wavelength range around the the reference wavelength λref

is considered in order to make the assumption more viable.

Figure 2.6. Illustration of a distributed Bragg reflector with a quarter wavelength
separation of the layers [24]
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One of ”the most general method of calculating the reflectance R of a multi-layer is based

on the matrix formulation of the boundary conditions at the films surfaces” [21]. Following

Byrnes [3] in the analysis of the DBR using the transfer matrix method. One considers an

incident normal ray of light passing through the stack. The stack is modelled as N layers of

thickness di and refractive index ni. The first and last layers will be air, so n0 = nN+1 = 1.

Figure 2.7. A simplified model of a multi-layer stack with N layers where each layer i has
refractive index ni and thickness di.

At each point inside the stack the electric field consists of a forward and backward propa-

gating component. The incident beam will be approximated as a plane wave with a electric

wave vector in the xz-plane. Equation 2.24 can be used to obtain the general equation for

the complex electric field vector

E⃗(r) = E⃗f e
ik⃗f ·r⃗ + E⃗b e

ik⃗b·r⃗

The subscript f indicates the forward propagating part of the beam, while the subscript b

references the backwards travelling part. The wave vector k⃗ is then chosen to be embed-

ded inside the xz-plane.

k⃗f = 2πn
λvacuum


sin(θ)

0
cos(θ)

 , k⃗b = 2πn
λvacuum


sin(θ)

0
−cos(θ)


Considering the interface between the ith and i+ 1th layer. From Fresnel’s equations [16]

the reflectance and transmission coefficients ri,i+1, ti,i+1 for the interface can be obtained.

The following relations between the backward and forward travelling portions of the electric
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field of the two layers can be found:

E⃗b,i = E⃗b,i+1 ti+1,i + E⃗f,i ri,i+1 (2.65)

E⃗f,i+1 = E⃗f,i ti,i+1 + E⃗b,i+1 ri+1,i (2.66)

Within each of these layers a phaseshift of δi = 2πdini/λ occurs. To simplify the nota-

tion, scalar amplitudes are introduced where vi denotes the forward travelling portion of

the wave in the ith layer and wi the backward part. In addition to this v0 = 1 is the in-

coming beam, w0 = r the overall reflection and vn+1 = t is the transmission. As only one

incident beam from the left is considered, the backwards component behind the stack is

zero, wn+1 = 0.

vi+1 = vie
iδiti,i+1 + wi+1ri+1,i (2.67)

wie
−iδi = vie

iδiri,i+1 + wi+1ti+1,i (2.68)

Sorting this for vi and wi the following are obtained:

vi = vi+1e
−iδi

1
ti,i+1

− wi+1
ri+1,ie

−iδi

ti,i+1
(2.69)

wi = vi+1e
iδi
ri,i+1
ti,i+1

+ wi+1e
iδi

(
ti+1,i − ri,i+1ri+1,i

ti,i+1

)
(2.70)

This can now be rewritten more compactly:

(
vi

wi

)
= Mi

(
vi+1

wi+1

)
with Mi =

(
e−iδi 0

0 eiδi

)(
1 ri,i+1

ri,i+1 1

)
1

ti,i+1
(2.71)

Combining all of these together with the boundary conditions yields an expression for the

transmission and reflection coefficients. The overall characteristic matrix for the multi-layer

stack is defined as the product of all the individual layer characteristic.

(
1
r

)
= M

(
t

0

)
with M = 1

t0,1

(
1 r0,1

r0,1 1

)
M1M2M3 · · ·MN =

(
M00 M10

M01 M11

)
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The reflection coefficients is then given by:

r = M10
M00

t = 1
M00

(2.72)

With the reflection and transmission coefficients (R = r2 and T = t2) everything of interest

in the multi-layer stack can be calculated. This has shown that using the transfer matrix

method it is possible to model a DBR mirror for incoming plane waves. The distributed

Bragg reflector is tuned to a specific frequency, which involves the quarter wavelength

stacks discussed above. Within this regime the mirror is highly reflective. However if

much lower or higher frequencies than the tuning frequency are shine onto the stack the

reflectance become much smaller.

Over the course of this project the analytical calculations for the DBRs mirrors were not

performed. This theoretical discussion served to show the underlying mathematics of a

numerical model which simulates DBR mirrors. The analysis done above can be imple-

mented in any high level programming language. In order to verify early models build with

COMSOL one of these implementation in Python the so called TMM library was used. In

Figure 2.8 the transmission spectrum of a DBR as calculated by the python TMM library is

depicted.

Figure 2.8. Simulation of distributed Bragg reflector of a typical Reflectance vs.
Wavelength plot done using the Python TMM library. This plot describes a DBR with 15

Bragg pairs where the refractive indices 2.91 and 3.45 corresponding to the material AlAs
and GaAs respectively were used
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2.5 Photon Confinement

The theory discussed so far has been about planar or two-dimensional cavities. The pho-

tons inside are confined in the longitudinal direction by the two parallel highly reflective

mirrors of the plane-parallel Fabry-Pérot cavity. They are still free to move in the two di-

mensional xy-plane parallel to these two mirrors. In many applications of quantum optics

or solid state physics in general one might wish to confine the photons even further. This

can be done through introducing ’barriers’ inside the cavity in the xy-plane to restrict the

movement of the photons. This then corresponds to a reduction of the dimension. If these

’barriers’ or materials of higher dielectric constant than the air in the cavity are introduced

in both direction of the transverse plane the dimension is reduced to zero.

In order to illustrate the main idea behind photon confinement a key formula will be deduced

from Maxwell’s equations.

By inserting j⃗free = 0 and 2.5 into 2.1 the following equation is obtained:

∇ × H⃗(r, t) = ∂

∂t

(
ϵ0ϵ(r) E⃗(r, t)

)
Here is noted that the permittivity is written as ϵ = ϵ0ϵ(r) to highlight its spatial depen-

dence, as the permittivity varies considerably throughout the cavity. This expression can

be rewritten as follows:

1
ϵ(r)∇ × H⃗(r, t) = ϵ0

∂

∂t
E⃗(r, t)

∇ ×
( 1
ϵ(r)∇ × H⃗(r, t)

)
= ϵ0∇ ×

(
∂

∂t
E⃗(r, t)

)
∇ ×

( 1
ϵ(r)∇ × H⃗(r, t)

)
= ϵ0

∂

∂t

(
∇ × E⃗(r, t)

)
Using the equations 2.2 and 2.6 leads to:

∇ ×
( 1
ϵ(r)∇ × H⃗(r, t)

)
= ϵ0

∂

∂t

(
− ∂

∂t
B⃗(r, t)

)
∇ ×

( 1
ϵ(r)∇ × H⃗(r, t)

)
= −ϵ0

∂2

∂t2

(
µ0H⃗(r, t)

)
Through considering monochromatic solutions 2.22 further rearrangements can be made:
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∇ ×
( 1
ϵ(r)∇ × H⃗(r)e−iωt

)
= −ϵ0µ0

∂2

∂t2

(
H⃗(r)e−iωt

)
∇ ×

( 1
ϵ(r)∇ × H⃗(r)e−iωt

)
= ϵ0µ0ω

2H⃗(r)e−iωt

∇ ×
( 1
ϵ(r)∇ × H⃗(r)

)
= ϵ0µ0ω

2H⃗(r)

Substituting the relation c2 = 1/µ0ϵ0 for the speed of light in a vacuum finally yields:

∇ ×
( 1
ϵ(r)∇ × H⃗

)
=
(
ω

c

)2
H⃗ (2.73)

Θ H⃗ =
(
ω

c

)2
H⃗ (2.74)

With the Θ operator being defined as follows:

Θ = ∇ ×
( 1
ϵ(r)∇×

)

,which has eigenvalues ω2/c2.

The equation 2.73 is sometimes referred to as the Master’s equation and it captures ”the

heart of Maxwell’s equations for a harmonic mode in mixed dielectric medium” [22]. 2The

relative permittivity ϵ(r) is intricately linked to the refractive index ni of the different ma-

terials in the cavity. This link is given by n(r) =
√
ϵ(r)µr =

√
ϵ(r) since µr = 1. One

cannot help but draw a connection to the wave mechanics formalism of quantum theory.

The introduction of dielectric materials changes the potential for the photons and thus the

magnetic and electric field distributions E⃗(r), H⃗(r) as well. So through cleverly introducing

certain dielectric materials one can create specific distributions. ”The Hermitian nature of

the operator Θ leads to real eigenvalues. Further, since ϵ(r) > 0 everywhere, Θ is positive

semi-definite, and therefore all the eigenvalues are non negative. Further, any two eigen-

modes with different eigenvalues are orthogonal.” [26]. This shows further similarities to

the Hamiltonian Operator in quantum mechanics. Analytic solutions to the equation 2.73

for arbitrary geometries are far from trivial. The main idea behind this project and illustrated

in [27] is that the introduction of an hBN lens inside the cavity changes the ’photon potential’

ϵ(r) and leads to specific electric field distributions. By ’hBN leans’ is meant a microscopic

lens form which consists purely of hexagonal Boron Nitrate. The specific forms analysed

2For the reader’s wondering why the equation 2.73 is written with the magnetic field H⃗ and not the electric
field. This has something to do with the hermitian nature of the equation which is not given anymore if
written for the electric field. Interested readers are referred to second chapter in [22] for a much more
detailed treatment of the subject.
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in this project will be discussed later in section 4.2.1.

Even though general analytical solutions to 2.73 are not possible a few special cases of

relevance to the Fabry-Pérot cavities in this project will be discussed. In a planar geometry

where the mirrors are separated by a distance d in a medium with refractive index n3. ”The

photon motion along the perpendicular z-direction is quantised as qz = πm
d ” [4], where m

is a positive integer. Each of these longitudinal modes qz will have a frequency dispersion

relation of the following form [4]:

ωcav = c

n

√
(qz)2 + k2 ≈ ω0

cav + ℏk2

2mcav
(2.75)

This parabolic dispersion relation gives the photon an effective mass mcav. This quantity is

related to the cutoff frequency of the cavity ω0
cav = cqz/n by the following expression

mcav = ℏnqz

c
= ℏω0

cav

c2/n2

Through longitudinal confinement the photons are given mass and concetrated between

the mirrors.

To elaborate on this a little bit further ”the electric field distribution E(r⃗) = E0ψ(r⃗) is

determined by a spatially varying mode function ψ(r⃗)” [20]. A Gaussian standing wave

inside a general Fabry-Pérot with mirrors located at x = (0, d) has a mode function given

by:

ψ(r⃗) = sin

(2πx
λ

)
exp

(
y2 + z2

ω0

)

Where ω0 is the cavity waist [23]. Without going into too much detail, in a planar Fabry-

Pérot cavity with two parallel plane mirrors the curvature of both mirrors can be treated as

infinite. As a result the ω0 is also infinite, which simplifies the above expression to:

ψ(r⃗) = sin

(2πx
λ

)
(2.76)

This longitudinal confinement is done by plane parallel Fabry-Pérot cavities and the main

turning parameter here in the setup is the separation of the mirrors and their reflectivities.

If the electric field distribution is to be manipulated further additional geometric features

inside the transverse plane need to be introduced which confine the photons in both direc-

tions of the transverse plane. This change in geometry changes the spatial distribution the

electric permittivity ϵ(r) in the master’s equation 2.73 and reduces the dimension of the

3The setups studied in this project contain air between the two mirrors, so n = 1. However the n will be kept
as a variable to keep the expressions somewhat more general.
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cavity to zero.

An example of introducing transverse confinement in Fabry-Pérot cavities are plane-concave

Fabry-Pérot cavities. These cavities are similar to the ones discussed previously, however

a key difference is that one or both of the mirrors are curved. The basic geometry of a

plane-concave Fabry-Pérot cavity is illustrated in Figure 2.9.

Figure 2.9. Illustration of a planar-concave Fabry-Pérot cavity where the second mirror
M2 is curved. The beam waist of a Gaussian mode is then drawn in blue to highlight the

confinement of the photons underneath the dimple [2]

Even though plane concave Fabry-Pérot cavities are great in creating zero-dimensional

micro-cavities. The main additional tuning parameters for this type of setup are the cur-

vature radii R1 and R2 for the two mirrors. As these are only two parameters the setup

is limited in its flexibility to create transverse cavity modes. A new approach to creating

zero dimensional Fabry-Pérot cavities was made this year through the development of a

new procedure to create fine structures and geometries with the material hexagonal Boron

Nitrate [27]. The work laid the foundation of what could potentially become the next gen-

eration of optical micro-cavities. Through placing an hBN lens inside the cavity on top of

one of the DBR mirrrors the researchers managed to confine the light on top of the lens.

This is illustrated in Figure 2.10. Because the method of shaping the hBN freeforms is

very flexible this work lays the foundation of a whole new class of experiment with placing

different types of hBN lenses and shapes inside Fabry-Pérot micro-cavities.

The main goal of this project was to build numerical models for Fabry-Pérot cavities within

COMSOL and then simulate possible lens types. This work will be a key step in choosing

which hBN geometries to investigate further inside these cavities.
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Figure 2.10. An illustration of an hBN lens inside the Fabry-Pérot micro-cavity. Marked in
red is the concentrated electric field which can be seen to concentrate on top of the lens

[27]
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COMSOL Multiphysics© is a software product which allows the user to numerically simulate

physical systems. It has many applications in Physics and Engineering through solving the

relevant differential equations on given domain with the Finite Element Method (FEM). This

software was chosen as it is able to solve Maxwell’s equations numerically for arbitrary

geometries and materials. This aspect was particularly relevant for this project since the

idea was to build models, which could simulate arbitrary hBN structures inside a Fabry-

Pérot cavity. The version utilised in this analysis was COMSOL 5.5. This chapter will

be concerned with introducing the basic notions of the FEM. Moreover, the procedure of

building a two dimensional Fabry-Pérot cavity will be discussed. Even though real Fabry-

Pérot cavities are three dimensional objects the 3D simulations in COMSOL are much more

computationally intensive. Since all three dimensional cavity geometries studied in this

thesis were rotation symmetric around the propagation direction of the beam the decision

was made to implement the simulations in a two dimensional geometry in COMSOL.

3.1 Theory on Finite Element Method (FEM)

Solving partial differential equations such as the Maxwell equations 2.1, 2.2, 2.3, 2.4 an-

alytically can be cumbersome and for certain geometries downright impossible. When

trying to solve a variational boundary value problem for a continuous solution numerically

the computer discretises the system. This is important as computers are finite state ma-

chines and hence cannot compute continuous solutions. The objective of the FEM is then

to provide an ”alogrithm for the computation of an approximate numerical solution as a

function belonging to a subspace of the variational function space” [18]. The approxima-

tion is then done through minimising an associated error function to the problem with the

calculus of variations.

The process of discretising the domain is called meshing and marks a key step in the Finite

Element Analysis. Another key advantage of FEM as opposed to other numerical methods

for solving PDE’s such as finite differences is that ”while the solution is computed, the mesh

can be adapted in order to speed up convergence” [15]. The main idea behind meshing is
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illustrated in Figure 3.1.

Figure 3.1. A simple example of meshing a rectangle geometry within COMSOL

As can be seen in Figure 3.1 the software slices the domain into triangles of a specified

size automatically. The selection of shape and size done by the model builder as well as

the procedure for meshing will be explained in more detail in the next section.

3.2 Building a 2D DBR cavity in COMSOL

As the majority of this project consisted of working with the simulation software, a brief

outlook is given on the procedure of building Fabry-Pérot cavity setups within COMSOL

Multiphysics©. Depending on the physical situation different modules within the COMSOL

environment can be chosen. The modules concerned with electromagnetism are the fol-

lowing:

• AC/DC

• Radio Frequency (RF)

• Plasma

• Semiconductor

• Wave Optics

• Ray Optics

Out of these only the last two are designed for modelling optical systems. The Ray Op-

tics module models the electromagnetic wave propagation using the ray tracing approach.

”The propagating waves are treated as rays that can be reflected, refracted, or absorbed.

This treatment of electromagnetic radiation uses approximations that are appropriate when

the geometry is large compared to the wavelength.” [8]. As the nanophotonic systems to

be described in this project will be on length-scales comparable to the wavelength the con-

ditions for this approximation will not be satisfied. Moreover, one aspect of the project

consisted of varying the rayleigh length of the incoming Gaussian beam which also invali-
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dates the ray approximation of the beam. Thus the Wave Optics module was used in this

project. This module was specifically designed to ”study electromagnetic wave propagation

and resonance effects in optical applications” [9], which makes it ideal for an analysis of

Fabry-Pérot cavities. The main two interfaces in the Wave Optics module were of concern

for this project were:

• The Electromagnetic Waves, Beam Envelopes Interface

• The Electromagnetic Waves, Frequency Domain Interface

In the former is factors the electric field ”into a product of a slowly varying envelope function

(slowly on the scale of a wavelength) and a rapidly varying phase function” [12]. This was

a again a condition which would not be satisfied in the Fabry-Pérot cavities to be modelled

in this project. As a result the Wave Optics Frequency Domain interface was selected for

this analysis. This is the most robust way of studying optical phenomena in COMSOL,

when the systems are on the same length-scale as the wavelength. However, as fewer

approximations were made by COMSOL in this interface the simulations were more com-

putationally intensive. This section will be concerned with the general model used in this

project. Later models which used one or multiple hBN lenses were deviations from this

model.

To start modelling in COMSOL select Model Wizard and then the 2D option for the spatial

dimension. Next the Wave optics module is chosen and the initial study is set to the fre-

quency domain interface. Other studies can be added as well, but this was not done during

this project. In the Global Definitions section the following list of parameters are defined for

the model:

Figure 3.2. A list of all the model parameters
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A few important parameters to note in Figure 3.2 are:

• lda0: Reference Wavelength to which the micro-cavity will be tuned

• n_l : Lower refractive index of the two materials that will make up the DBRs. Here the

material was chosen as Silicon dioxide

• n_h: Higher refractive index of the two materials that will make up the DBRs. Here

the material was chosen as Tantalum pentoxide

• N: Number of Bragg pairs in the DBR. A Bragg pairs is the union of layer a low

refractive index and high refractive index.

• d_mirrors: Spacing between the two DBR’s and hence defines the cavity length.

• lda0_min: Lowest wavelength of incident radiation we wish to study

• lda0_max : Highest wavelength of incident radiation we wish to study

The parameters lda0, n_l, n_h, N and d_mirrors were not changed in any of the models.

The frequency domain interface in the COMSOL wave optics module performs a parametric

sweeps of different frequencies for the incident beam. This means in a given frequency

interval a selected number of equally spaced frequencies is chosen to be simulated. The

variables lda0_min and lda0_max were used to specify this frequency interval.

The rest of the parameters are either directly derived from the above or are arbitrary chosen

to make the geometry work within COMSOL. The Figure 3.3 depicts the geometry. In

Figure 3.3 the lens is already introduced. As the lens is not relevant for the next sections

its introduction into the geometry will be explained later in section 4.2.1.

In COMSOL areas within the model are referred to as domains while lines are called bound-

aries. It can be seen in Figure 3.3 that the entire geometry is fitted within a large rectangle

of width d_cav and height h_cav. This rectangle serves as a background for the entire

model. The two lines on either side of the rectangle are used for meshing and boundary

conditions. These lines are of width d_PML_layer / 2 and can be set inside rectangle under

the feature layers in COMSOL. The distributed Bragg reflectors are built by first introducing

two rectangles with the height of the large rectangle and widths d_l_DBR and d_h_DBR

respectively. The width of these layers corresponds to the quarter wavelength spacing as

described by equation 2.64. The first DBR is then build by unifying the first two layers and

then using the array tool of COMSOL geometry. This feature duplicates the input object,

in our case this would correspond to creating 15 pairs of the two layers. In a next step the

first DBR is mirrored using the mirror tool to copy the first DBR and create a cavity.

Once the geometry is set up in COMSOL the next step is to assign the materials for each

domain. In the figure 3.3 is to possible to see that the original large rectangle is divided into
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Figure 3.3. The geometry of a 2D DBR Fabry-Pérot cavity in COMSOL as well its
boundary conditions are depicted

many domains, 340 to be precise. Now each of these 340 domains needs to be assigned

a material. For this the refractive indices nl and nh were defined in the model parameters

section in Figure 3.2, these correspond to the refractive indices of SiO2 and Ta2O5. They

were defined as variables so that they can easily be changed in case different materials

are used for the DBRs. To add these materials in COMSOL go to the Materials toolbar

and click add material. Then type in the relevant refractive index using the variables from

the global parameter list in Figure 3.2. The material air, which will make up most of the

domains in the model, is already included in the COMSOL software. Air is also chosen

as the material between the DBR mirror, as this was also done in the experiment on zero-

dimensional Fabry-Pérot cavities using hBN lenses [27]. The hBN inside the lens will be

added later, so for now the lens will also be designated as air in order to test the models

using existing numerical tools as shown in section 4.1.

The next step is to start thinking about how to excite the relevant physics into the model.

In this first model a plane wave as described by equation 2.26 is send into the model.

In reality one would typically place a laser, or some other photon source, in front of the

cavity. To realise this within COMSOL without including an entire model of a laser in the
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simulation the Scattering Boundary Condition is used. The rightmost boundary is chosen

for the scattering boundary condition as depicted in Figure 3.3. In order to send in a plane

wave select the incident field as Wave given by E-field. The following specifications for the

plane wave were set to:

E0 =


0
0
1

 and k⃗direction =
(

−1
0

)

Through these specifications the incident beam will propagate through our setup from the

right side to the left. In reality the cavity setup will be placed inside a laboratory surrounded

by air. Neglecting outside environmental effects the photons which bounce of the system

will leave the cavity and escape from the system. However inside the simulation it not

possible to create an infinitely extending micro-cavity so artificial truncation of the domain

through boundary conditions needs to be introduced on each side of the rectangle in Fig-

ure 3.3. In order to prevent the electric field to accumulate at the left side of our cavity.

An artificial domain in the leftmost domain. This so called Perfectly matched layer (PML)

”absorbs all radiated waves with small reflections” [12] and acts like a ’sink’ for the electric

field in the simulation. The PMLs do so by applying a ”coordinate scaling to a layer of

virtual domains surrounding the physical region of interest.” [12].

An important part of the analysis in 2.3 was the transmission coefficient of a micro-cavity.

This was due to the fact that a peak in the transmission spectrum corresponds to a reso-

nant mode in the cavity. In order to get a quantitative measurement for the transmission

in the model a line integration needs to be performed in the left region of the cavity. The

line right in front of the PML layer was chosen for the electric field norm squared |E⃗|2 to

be integrated over. This line is highlighted in pink in Figure 3.3. From equation 2.30 it is

clear that the resulting integral would be proportional to the integral of the intensity. The

same integration is performed for the incoming beam and the transmission coefficient is

then given by their ratio.

It was attempted to surround the entire domain with PMLs however this did not yield the

desired effect as the resulting electric field distribution across the domain was not symmet-

ric anymore.

The two other boundary conditions considered in this project were:

• Perfect Electric Conductor (PEC)
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• Perfect Magnetic Conductor (PMC)

Out of these two only the Perfect Magnetic Conductor is of relevance to this model. The

Perfect Electric Conductor boundary conditions is technically still part of the model, but

have no effect on the system. Even though the PEC is not relevant for this model its main

functionalities will still be explained in case future models wish to include this boundary

condition.

The perfect electric conductor (PEC) boundary conditions enforces the following on the

boundary.

n⃗× E⃗ = 0

The tangential component of the electric field is then set to zero. The PEC is particularly

good at modelling lossless metallic surfaces. Moreover it imposes a symmetry for the

magnetic fields and an anti-symmetry for the electric fields [12]. An illustration of the the

PEC is given below in Figure 3.4.

Figure 3.4. ”The perfect electric conductor boundary condition is used on exterior and
interior boundaries representing the surface of a lossless metallic conductor or (on

exterior boundaries) representing a symmetry cut. The shaded (metallic) region is not
part of the model but still carries effective mirror images of the sources. Note also that any
current flowing into the boundary is perfectly balanced by induced surface currents. The

tangential electric field vanishes at the boundary.” [12]

However the anti-symmetry of the electric field in the cavity is not what should happen in a

symmetric Fabry-Pérot cavity. As a result the top and bottom edges of the cavity internal

boundaries are set to the Perfect Magnetic Conductor (PMC) boundary condition, which is

depicted in Figure 3.3. The PMC ”implies that the solution is mirror symmetric about those

planes” [7]. It does so by imposing the following on the boundary:

n⃗× H⃗ = 0

”On external boundaries, this can be interpreted as a “high surface impedance” boundary

condition or used as a symmetry type boundary condition. It imposes symmetry for electric

fields and electric currents. Electric currents (volume, surface, or edge currents) are not
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allowed to flow into a perfect magnetic conductor boundary as that would violate current

conservation” [12]. The PMC is also illustrated further in Figure 3.5.

Figure 3.5. ”The perfect magnetic conductor boundary condition is used on exterior
boundaries representing the surface of a high impedance region or a symmetry cut. The

shaded (high impedance) region is not part of the model but nevertheless carries effective
mirror images of the sources. Note also that any electric current flowing into the boundary
is forbidden as it cannot be balanced by induced electric surface currents. The tangential

magnetic field vanishes at the boundary. On interior boundaries, the perfect magnetic
conductor boundary condition literally sets the tangential magnetic field to zero which in
addition to setting the surface current density to zero also makes the tangential electric

field (and in dynamics the tangential electric field) discontinuous” [12]

In Figure 3.3 the PMC boundary condition is not set on the exterior boundaries of the

rectangle. Instead the PMC boundaries enclose the cavity from the top and bottom. The

exterior boundaries are still set as PEC due to the fact that COMSOL requires all exterior

boundaries to be set a boundary condition. For these top and bottom exterior boundaries

the PMC could have been chosen as well. The fact that this models still includes the

PEC is a relic from older models, which used PMLs and was kept to give the model builder

some more freedom with the geometry. The electric field distributions in all models showed

that the electric field norm in domains behind the PMC boundaries equals zero. The PEC

boundaries can thus be ignored and the cavity can be treated as if it ends with the PMC

boundaries.

COMSOL uses the Finite Element Method (FEM) to calculate a numerical solution of the

Maxwell equations for the model. In order to apply the FEM the domain needs to be

discretised into smaller pieces as illustrated in 3.1. This is a crucial step which can lead to

many problems if done incorrectly. One needs to consider the following:

• How the geometry is divided

• With what shape or element type the geometry is divided

• The size, density, and number of elements in the geometry

• The element quality
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There is the option to do a physics controlled mesh and let COMSOL do the meshing.

Unfortunately this rarely works perfectly and further analysis is needed. It is recommended

though to start the user-controlled meshing from this physics controlled one.

The mesh generator discretises the domains into triangular or quadrilateral mesh elements.

If the boundary is curved, these elements represent only an approximation of the original

geometry. The sides of the triangles and quadrilaterals are called mesh edges, and their

corners are mesh vertices. A mesh edge must not contain mesh vertices in its interior.

For this model the following mesh features within COMSOL were used [6]:

• Mapped : A meshing technique generating a structured mesh with quadrilateral ele-

ments for 2D or 3D models.

• Free Triangular : A free meshing technique generating an unstructured mesh with

triangular elements for 2D or 3D models.

• Distribution: This feature is for boundaries and used to link the meshing of the do-

mains on either side of the boundary.

There are many more mesh feature, however most of them are for three dimensional mod-

els. Any model implemented in two dimensions can be done very well using just these

three mesh features above. The resulting mesh for our model looks like follows:

(a) Center of model (b) Top left corner of model

Figure 3.6. Examples of the meshing inside the geometry

Plotting the mesh of the entire geometry was unfortunately not very insightful due to the

small meshing size. Therefore Figure 3.6 depicts two selected regions.

Figure 3.6a depicts the fine triangular mesh in the center of the cavity. It can also be

seen that at the end of the lens the meshing gets very fine. The COMSOL software does

this to ensure that even the smaller domains are meshed properly. So that no boundary

can be contained within a mesh triangle. In Figure 3.6b the mapped mesh to be seen in

35



3 COMSOL Multiphysics©

the boundaries of the cavity. It can also be noted that COMSOL automatically creates a

smooth transition from the finer mesh in the cavity to a more courser mesh outside of the

cavity. Furthermore a distribution is highlighted in blue in order the match the meshing of

the PML layer to the other mapped mesh domains.

Meshing a given geometry can bring some challenges. Firstly is noted that in the perfectly

matched layer domain the mapped feature of meshing needs to be used. This is recom-

mended by COMSOL as the elements should not get stretched or distorted. As a result

the Mapped feature for meshing are introduced in all PML domains. This will slice these

domains in rectangles. As the transmission coefficient is very important for the analysis in

this project and from equation 2.30 it is clear that the electric field amplitude squares is pro-

portional to the intensity. An integration of that quantity will be performed on the left side of

the cavity so this domain should be particularly well meshed. Furthermore, the distribution

feature is introduced, which links the domain on both sides of the boundary and fixes the

number of intersections on this boundary. In this example the distribution on the following

boundaries introduces ten nodes, which refines the mesh on the domains adjacent to the

boundary. These domains are now meshed very finely as well which is good for the inte-

gration. The rest of the system is modelled with the free triangular feature, which slices

the domains in triangles. The resulting electric field distribution will be analysed in the next

section and can bee seen in Figure 4.2.
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The goal of this project was to analyse and simulate the effects of introducing hBN lenses

of different shapes inside a planar Fabry-Pérot cavity to gain a better understanding of

these types of zero-dimensional cavities. It is anticipated that this work will be used to

simulate new shapes and forms of hBN structures before interesting ones are selected for

fabrication and experiments in real cavities. These models are designed to assist future

researchers in their study in this type of system.

The main outline for this chapter is the verification that the models build in 3 indeed de-

scribes a planar Fabry-Pérot cavity. Once this verification is complete the project pro-

ceeded in introducing an hBN lens into the system with Gaussian beams. In this analysis

different curvatures of the lens were analysed to get a better understanding of the trans-

verse confinement of the electric field. In a final step multiple lenses were introduced in

order provide a starting ground for more abstract shapes. These main steps are written

again in more compact form:

• Verification of model without lens using an existing modelling technique

• One hBN lens is introduced to the system

• Three different curvatures of one lens are analysed

• Investigation into the Rayleigh length of Gaussian beams

• Two and four lenses are placed inside the cavity

4.1 2D DBR cavity model without hBN lens

The transmission spectrum is a key characteristic of a planar Fabry-Pérot cavity as dis-

cussed in subsection 2.3. In order to verify that the model constructed in chapter 3 in-

deed models a planar Fabry-Pérot cavity its transmission spectrum was compared to an

established numerical simulation tool for planar Fabry Perot cavities. The TMM python

software package that implements the analysis for multi-layer stacks presented in 2.4 was

programmed by the same person who provided the underlying analysis in [3]. As a planar
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Fabry-Pérot cavity is just a set of two DBRs it is perfectly possible to model this system

using the TMM library.

The model from the previous chapter was computed in COMSOL and the transmission

plot exported to a Jupyter notebook. A python program using the TMM software package

computed the corresponding model and the two datasets was overlaid. The corresponding

code used in this project can be found in Appendix A. For this demonstration the frequency

range of 800nm − 1150nm was chosen. The overlay of the two datasets can be seen in

Figure 4.1.

(a) Transmission plot for large wavelength range
of 800nm− 1150nm

(b) Transmission plot for large wavelength range
near reference frequency of 1000nm

Figure 4.1. Data overlay of the COMSOL and TMM python models

It is clear from Figure 4.1a that the COMSOL data in green matches the blue and orange

data from the TMM model fairly nicely. Ts and Tp are the transmission coefficients for s-

and p-polarised waves respectively, which were calculated in the TMM model. However for

this setup both are identical, which is why the blue line cannot be seen. The reason why

the green line does not match the orange line in all places is a result of the way the data

is acquired. This COMSOL model uses the frequency domain interface, as explained in

chapter 3. This interface performs a frequency sweep. For the given interval of frequencies

it chooses a specified number equally spaced data points. In this simulation about 1500

were used. As this is a much less fine sweep than the TMM the overlay is not perfect

and COMSOL misses the characteristic spike at the reference wavelength. The TMM li-

brary used about 150 000 data points for its parametric sweep in Figure 4.1a. Even though

sweeps of this size are technically possible in COMSOL they are computationally extremely

intense. This limitation of the frequency sweep presented a great challenge in the analysis

of the models throughout the entire project. In order to more closely examine the charac-

teristic spike of a DBR Fabry-Pérot cavity the region around the reference frequency was

swept much more thoroughly. It can be seen that both models produce the same shaped

spike. However there is a small deviation of about 0.012nm. This deviation shows that the
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COMSOL models are not perfect at replicating an ideal DBR cavity and this should be kept

in mind when analysing the results. Even though there is some numerical error the devia-

tion is relatively small, so the models are still able to provide rich insights into the physics

of these systems. An assumption made in this project was that the deviation of 0.012nm
is a systematic error of the COMSOL simulation system, so that the models could still be

compared to one another. However some more investigation into this is needed.

The Transmission coefficient was obtained through integrating the norm of the electric field

squared |E|2 on both ends of the cavity. According to equation 2.30 |E|2 is proportional to

the intensity. As the region in front and behind the cavity both consist of air the ratio be-

tween the two integrals of |E|2 is exactly the transmission coefficient. On a side note here

the incoming electric field amplitude of the plane wave was chosen to be one, |E0| = 1,

so the calculation of the transmission coefficient can be simplified by simply dividing the

integral of |E|2 by the width of the cavity.

The peak occurred at 999.988nm or 299.796THz. The FWHM was calculated as 6.327 ∗
108Hz. This results in a Q-factor of:

QCOMSOL = 2.9976 ∗ 1014

6.327 ∗ 108 = 473836 ≈ 474 000

The Q-factor of the corresponding TMM model with FWHM = 0.00218nm is given by:

QT MM = 1000nm
0.00218nm = 458716 ≈ 459 000

It can be seen that QCOMSOL and QT MM are not exactly equal. This is likely due to errors

in the frequency sweep as some data interpolation had to be done to obtain the numbers

above. However the Q-factors are in the same ballpark which again reassures that the

COMSOL model is indeed modelling what it claims to.

As explained in section 2.3 the resonant frequencies of a planar Fabry-Pérot cavity are

exactly the frequencies for which the transmission spectrum peaks. Plotting the corre-

sponding electric field distribution of the frequency corresponding to the peak in the trans-

mission plot in Figure 4.1 can be seen in Figure 4.2. It is noted that sometimes the Q-factor

is calculated through the frequency and on other times through the wavelength, both are

equivalent as the equations 2.61 and2.63 show. This was a result of different conventions

used in different models.

The peak electric field norm depicted in 4.2 is about 273V/m, which is a significant in-

crease from |E0| = 1V/m so the resonant mode is indeed amplifying |E| inside the cavity.
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Figure 4.2. The electric field distribution is plotted at the resonance frequency of the
cavity. This frequency is the peak in the transmission spectrum

In this geometry of a planar Fabry-Pérot cavity clearly six peaks in the electric field norm

can be identified, which results from the longitudinal confinement of the photon field. This

can be explained by considering equation 2.76 again:

|ψ(r⃗)| =
∣∣∣∣sin(2πx

λ

)∣∣∣∣
Here the separation of the mirrors is set as d = 3000nm ≈ 3λ. So x ∈ [0, 3λ] which using

the above spatial dependence of the electric field yields to six peaks. Some care needs to

be taken when considering this formula though as it’s derivation considers mirrors located

at exactly x = (0, d). However with the DBRs considered in this project there is some

leakage of the electric field into the DBRs, which can also be seen 4.2. In order to properly

apply the formula 2.76 the effective length deff , (deff > d), of the DBRs needs to be

considered. The setup is symmetric in the y-Direction which results in an electric field

norm in Figure 4.2 that is symmetric in the y direction. The confinement of the photon field

is thus only longitudinal.

4.2 Zero dimensional DBR cavities with one hBN lens

So far the models discussed were concerned with planar or two-dimensional Fabry-Pérot

cavities. A next step in the project was to introduce a lens made of hexagonal Boron Ni-

trate (hBN), which is placed inside the cavity. The idea is that this lens will undo the setup’s

translational in-variance in the direction perpendicular to the x axis and thus create trans-

40



4 Results

verse confinement of the electric field. The transverse confinement for the photon field

effectively reduces the dimension of free movement for the photons to zero.

The lens is introduced in the COMSOL geometry through first creating a circle of radius

circ_radius + d_lens using the parameters from Figure 3.2. Then a rectangle of width

d_lens and height of the cavity itself is build. The lens is then obtained through intersecting

these two objects using the corresponding feature in COMSOL. The procedure is illustrated

in Figure 4.3.

Figure 4.3. The lens is created by intersecting the circle and the rectangle

Both the circle and the rectangle need to be positioned appropriately in order for the lens to

be situated right on top of the left DBR mirror. At this point it is noted that circ_radius >>

d_lens, so the curvature of the lens is mainly determined by the value of circ_radius. This

will become significant when different lens curvature are analysed.

The refractive index for hBN was set to nhBN = 2.0865 [32], which is the material’s refrac-

tive index at the reference wavelength of 1000nm. The refractive index is kept constant

for all frequencies in the simulation. Since the system is examined in a wavelength range

close to the reference wavelength this approximation is valid. However introducing a fre-

quency dependent refractive index might be a good improvement for future models. The

implementation of the lens into the model was fairly simple as the geometry for the lens

was already introduced in the model discussed in chapter 3. The only thing needed to be

done was to change the material from air to hBN in the relevant domains.

For the rest of the analysis the simulations will use Gaussian Beams as opposed to plane

waves. Gaussian beams were discussed in subsection 2.2. These beams are a much

better approximation for an incoming laser beam, so the comparison of results from the

simulation with experimental data on hBN lenses in Fabry-Pérot cavities such as [27] are

more valid. The reason why Gaussian beams were not considered before is that the TMM
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library used to check the previous model uses plane waves. The Gaussian beams were

introduced through the Scattering Boundary Conditions by selecting Gaussian beam in the

incident field box. The initial electric field amplitude E⃗0 and direction of the wavevector k⃗dir

were the same as for the plane wave model discussed in section 3.2. The distance to the

focal plane ρ0 = 0 so that the Gaussian beam would be centered at the boundary. The

beam radius ω0 = 20π/k, which is the standard setting in COMSOL. In subsection 4.2.3

some investigation into the ω0 parameter will be done.

4.2.1 Introduction of the hBN lens

The first hBN lens to be considered was defined through setting the two relevant parame-

ters as circ_radius = 50µm and d_lens = 50nm. These values were chosen arbitrarily

and will serve as a reference to the other models. Since over the course of this analysis

the parameter circ_radius was varied so circ_radius = 50 will be written more frequently

to remind the reader of the curvature.

As can be seen in Figure 4.4 the lens is situated on top of the left DBR mirror and about

4.47µm wide in the geometry.

Figure 4.4. The first hBN lens in the Geometry

The project proceeded in analysing the transmission spectrum in order to find the reso-

nance frequencies.

Similar to the Figure 4.1 the transmission peak is missed in the large wavelength sweep

on the left in Figure 4.5a, so it is plotted again on the right. A few interesting things can

be noted already from 4.5. Firstly, the transmission peak is still very close to one, however

at close inspection smaller than in 4.1b. Moreover, the peak shifted in wavelength and is

now slightly larger than the reference wavelength of 1000nm. The peak has a value of
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(a) Transmission plot for large wavelength range
of 800nm− 1150nm

(b) Transmission plot for large wavelength range
near reference frequency of 1000nm

Figure 4.5. Transmission spectrum for one hBN lens with circ_radius = 50µm

T = 0.97 and occurs at 1000.193nm or 299.735THz. The Full Width Half Maximum is

given by FWHM = 6.805 ∗ 108Hz and the Q-factor as follows:

Q = 2.99735 ∗ 1014Hz

6.805 ∗ 108Hz
= 440431 ≈ 440 000

The Q-factor is still in similar range to the Q-factor seen in the plane wave and TMM model,

though slightly smaller.

Figure 4.6. Distribution of the electric field norm at the resonance frequency of the zero
dimensional Fabry-Pérot cavity with one hBN lens at circ_radius = 50µm

In Figure 4.6 the electric field distribution is displayed at the resonance frequency. Firstly

the six peaks in the longitudinal direction of the beam can be observed again, which is
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similar to what could be observed in Figure 4.2. A qualitative explanation why a similar

longitudinal structure might be expected is that the hBN lens is 50nm thick. This rep-

resents 1/60 the length of the cavity. Moreover, the refractive index of the hBN used is

nhBN = 2.08626 the layer of Ta2O5 which sits right behind the lens has a refractive index

nh = 2.1205. Both refractive indices are not too different, so the changes to ϵ(r) might be

so small that the change in the resulting electric field distribution from the master’s equa-

tion 2.73 in the longitudinal direction might just be given by a small perturbation.

A key difference in the Figure 4.2 and 4.6 is the electric field distribution in the transverse

direction. A line cut of the electric field distribution is taken at one of the peaks in the

x-direction as highlighted by the purple line in Figure 4.6 results in the following plot:

Figure 4.7. A vertical line cut of the electric field distribution squared across the entire
cavity shows the fundamental (0,0) Gaussian mode

The parameter Arc length is standard in COMSOL and in this case refers to the vertical

height. So an Arc length of zero corresponds to the position in the model, where the verti-

cal line crosses the bottom of the cavity while the maximum Arc length corresponds to the

top. This plot clearly shows a peak in of the electric field distribution right in front of the

lens. The vertical profile depicted in Figure 4.7 stands in significant contrast to what could

be observed in Figure 4.2. The introduction of the circ_radius = 50µm hBN lens confines

the electric field in the transverse plane. In fact Figure 4.7 looks a line cut of the fundamen-

tal Gaussian mode depicted in Figure 2.2. This is similar to the experimental data gathered

by Lassaline and collaborators [27], who also measured the fundamental transverse mode.

In this project it was attempted to find more Laguerre-Gaussian transverse modes but no

other clear modes could be found. A possible explanation for this is that the corresponding

transmission peaks were missed in the frequency sweep.
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Figure 4.8. Zoomed in Transmission Plot to highlight the second peak.

A second transmission peak could be found located at 998.254nm or 300.317THz. As can

be seen in Figure 4.8 this transmission peak is much smaller with peak transmission of

T = 0.0197. Using the data above the full width half maximum was calculated, FWHM =
6.543 ∗ 108. From this the Q-factor is given by:

Q = 3.00317 ∗ 1014Hz

6.543 ∗ 108Hz
= 458971 ≈ 459 000

The Q-factor again of a similar scale to the ones already seen.

The Figure 4.9 shows the electric field distribution at the frequency of the transmission plot

depicted in Figure 4.8.

A number of interesting features can be noted about this distribution. Firstly, this frequency

seems to correspond to a different longitudinal mode, as the sinusoidal peak structure from

Figure 4.6 is no longer present. Even though that is the case the electric field distribution

still exhibits a symmetry across the vertical centered line. Another key difference is that

there seems to be some periodicity in the occurrence of the peaks in the transverse plane.

In order to analyse the transverse modes further vertical line cuts were taken through each

of the first three longitudinal peaks as indicated by the red lines in Figure 4.9. The plots in

Figure 4.10 show these line cuts.

All of these plots show the slightly periodic nature of this transverse mode. Another inter-

esting feature is that the electric field is weakest right in front of the lens, which stands in

direct contrast to what could be seen in the fundamental Gaussian mode in Figure 4.6. The
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Figure 4.9. Electric field distribution of a second transmission peak located at 998.254nm

transverse field distribution in front of the lens corresponds to the middle peak in all three

plots. Moreover, it is not yet clear which transverse Gaussian mode/modes the Figures

4.10a, 4.10b and 4.10c correspond to. The plots suggest that depending on the wave-

length the light is focused on the lens or on specific other sections of the cavity. One could

also make the argument that this mode is indeed non physical. An idea of how to to gain

some insight into this hypothesis would be to increase the vertical height of the cavity and

see whether the period nature of the transverse mode change in any way. If the transverse

electric field distribution still changes for relatively large vertical cavity heights the mode is

likely non-physical. Due to time constraints this was not done during the project.

As this second cavity mode did not exhibit a transmission peak of height comparable to

the first, the Free Spectral Range and Finesse could not calculated for this cavity. It was

attempted to find another transmission peak which would have a similar height to the fun-

damental mode. This was however not successful. A possible reason for this is that the

parametric frequency sweep of the frequency domain interface missed these relatively

small peaks. Some further investigation is needed to verify whether these peaks exist or

not.
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(a) First longitudinal peak (b) Second longitudinal peak

(c) Third longitudinal peak

Figure 4.10. Vertical lines cuts of the electric field distribution squared at a second smaller
resonance peak
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4.2.2 Dependence of photon confinement on curvature of lens

In order to gain some more insight into the hBN lens zero-dimensional Fabry-Pérot, the

dependence of the electric field distribution on the curvature of the lens was investigated.

For this two new lenses were places in two separate models. These new models were

identical to the one discussed previously with the exception that the radius of the circle

used to create the hBN lens geometry was altered. Previously the circle radius was given

by circ_radius + d_lens. The latter parameter was kept constant at d_lens = 50nm in

order to have the same lens thickness in all three models.

In the previous model the circle radius parameter was set as circ_radius = 50µm. The

two new models created for this investigation will be abbreviated as follows:

• MC Model: model for lens with more curvature, circ_radius = 15µm

• LC Model: model for lens with less curvature, circ_radius = 100µm

(a) Model for lens with more
curvature:

circ_radius = 15µm

(b) Original model from
subsection 4.2.1:

circ_radius = 50µm

(c) Model for lens with less
curvature:

circ_radius = 100µm

Figure 4.11. The three differently curved hBN lenses (blue) depicted inside their
respective geometry

These specific values for circ_radius were chosen rather arbitrarily and simply supposed

to illustrate the principle of changing the curvature.

Repeating the analysis done in subsection 4.2.1, a small wavelength range around the

reference wavelength of 1000nm is swept in each model to find the fundamental Gaussian

mode in the transmission spectrum. The transmission peaks for the three models occurred

in the at the following wavelengths:

• MC model: 1000.074nm

• original model: 1000.193nm

• LC model: 1000.320nm
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Even though the deviations in these resonance wavelengths are small a trend in the data

can be observed. The more curved the lens is the smaller is its resonance wavelength.

These three data point are not enough to derive a general formula. A qualitative explana-

tion could be that a more curved lens confines the photon field in a smaller potential in the

transverse plane, so one would expect smaller wavelengths for the stable modes.

The transmission peak in the MC model occurs at 1000.0743nm with a transmission coef-

ficient of around 0.924. The Full Width Half Maximum can be calculated from this data to

be FWHM = 0.00219nm. The Q-factor is then given by

QMC = 1000.0743nm
0.00219nm = 455737 ≈ 456 000

This Q-factor is a little bit higher than the derived in the previous model whereQ ≈ 440 000.

However given that the deviation is not very large, this difference could have arisen due to

calculation errors.

In the LC model the peak occurred at 1000.320nm or 299.697THz with a transmission

coefficient of 0.963. The Full Width Half Maximum was FWHM = 6.829 ∗ 108Hz and the

Q-factor was then

QLC = 299.697 ∗ 1014Hz

6.829 ∗ 108Hz
= 438848 ≈ 439 000

The QLC is even closer to the original Q-factor. As all three Q-factors are fairly similar, the

analysis done in this project would suggest that the Q-factor of the zero-dimensional hBN

lens Fabry-Pérot cavity depends only weakly on the curvature of the lens.

In the next step the electric field distribution of both models is again plotted at the reso-

nance frequency. The electric field distributions in both Figures 4.12a and 4.12b look fairly

similar to the distribution in Figure 4.6. The transverse and longitudinal modes have some

similarities. Especially the six peak structure discussed previously can be seen again. It

can be noted however that the peak in the electric field norm is different in all three models.

The highest peak is exhibited in the LC model and the lowest in the MC model. So the

curvature also appears to have an impact on the magnitude of the electric field norm. This

is especially significant if a cavity with immense electric field norms needs to be designed.

Even though the three models covered so show that a smaller curvature increases the elec-

tric field norm, it is unlikely that this will continue indefinitely. An interesting investigation

would be to test a wide range of curvatures to see whether an optimum can be identified.

Due to time constraints this was not done during this project.
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(a) MC model

(b) LC model

Figure 4.12. Electric field distributions of both models at the resonance frequency

To more closely examine the effect of changing the curvature of the lens again vertical lines

cuts are taken across the entire cavity in the electric field distributions in Figure 4.12.

(a) MC model
(b) LC model

Figure 4.13. Vertical line cuts in the electric field distributions squared of both models at
the resonance frequency

A vertical line cut across the entire cavity in the MC model where the x-coordinate was set

so to the first of the six longitudinal peaks in the electric field distribution.

Drawing comparisons between the Figures 4.13 and 4.7 it is clear, that the transverse

mode in the MC model looks a lot less smooth than the other two models. It could be that

for the curvature in the MC model the fundamental Gaussian mode is located at a different
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resonance frequency. Another possible explanation is that this curvature is above some

threshold after which no transverse fundamental Gaussian mode is possible, though this

seems unlikely. It could also be a numerical error of the COMSOL simulation software.

When the line cuts of the original and LC models, Figures 4.7 and 4.13b respectively, are

examined more closely it is possible to see some of the ’shaky’ characteristics which are

observed to a much more extreme extend in Figure 4.13a. The three plots would then

suggest that the more curved the lens is the more shaky its transverse modes become.

Some more investigation into this dependence would be insightful.

In both the LC and MC models other smaller transmission peaks could be identified. Both

exhibited fairly counter intuitive electric field distributions.

(a) MC model

(b) LC model

Figure 4.14. Similar electric field distributions at smaller transmission peaks in the models

The wavelength depicted in the MC model is 999.626nm and in the LC it is 1000.348nm.

Throughout the course of this project it was unfortunately not possible to find a reasonable

explanation for these distributions, but given they occurred in both models for two different

curvatures there appears to be a pattern. These plots could just be a consequence of

numerical errors in the simulation or a result of the boundary conditions in the simulation

software. Another possible explanation is that these distributions correspond to actual

physical modes inside the cavity. Learning more about them will give more insight into the

simulation software or the physics it attempts to model.
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4.2.3 Rayleigh length of Gaussian beams

The concept of the Rayleigh length z0 was discussed in subsection 2.2. The key idea is

that for distances from the focal place smaller than the Rayleigh length the beam waist

radius can be approximated as constant. So if a laser beam is treated as Gaussian, this

quantity gives a metric for the focus of the laser. In all numerical models discussed thus far

the beam waist radius was defined as follows:

ω0 = 20π
k

k is the wavevector. This is a somewhat standard setting in COMSOL and initially not much

thought was given to it. If this rayleigh length is calculated for the reference frequency

λref = 1000nm used in the models:

z0 = k ω2
0

2 = 202 π2

2k = 202

2
λπ

2 ≈ 3 ∗ 10−4m = 300µm

Given that the entire setup is only 16µm wide it is safe to approximate a constant beam

waist radius of the Gaussian beam when entering the cavity for all wavelengths analysed

in this project.

In order to investigate the dependence of the electric field distribution on the Rayleigh

length the beam waist radius was tuned so that z0 ≈ 10−6. This way the Rayleigh length

would be on the length-scale of the cavity. Moreover the beam waist radius could no longer

be treated as constant. Plotting this electric field distribution for the reference wavelength

λref across the cavity yielded an electric field distribution which can be seen in Figure 4.15.

Even through increasing the incoming electric field amplitude to |E0| = 100V/m (|E0| =
1V/m in all other models) the incoming Gaussian beam is not able to significantly penetrate

into the DBR cavity. It was thus concluded that the models are only very weakly dependent

on the Rayleigh length, unless it is changed so drastically that the entire shape of the

beam changes. The Figure 4.15 resembles very nicely the Figure 2.1. The focal plane of

the Gaussian beam used in this simulation was the boundary so only the left half Figure

2.1 can be seen in Figure 4.15.

This investigation was not directly relevant for the analysis of zero dimensional cavities, but

rather to test a setting in the software. However, when using the models from this project to

design am actual lab experiment changing the Rayleigh length could be used to investigate

optimal settings for the focus of the incoming laser beam.
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Figure 4.15. Electric field distribution across cavity for a Rayleigh length of z0 = 10−6 and
electric field amplitude of 100V/m
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4.3 Zero dimensional DBR cavities with multiple hBN lenses

The work done by Lassaline and collaborators [27], who researched hBN lenses inside

optical micro-cavities were mainly focused on a new procedure to create freeform hBN

landscapes on microscopical scales. An early goal of this project has thus been to lay

the foundation for numerical models, which can simulate arbitrary hBN structures inside

planar Fabry-Pérot cavities. The starting point for arbitrary structures in this project was

to introduce multiple lenses into the cavity. Two models were build one with two the other

with four hBN lenses. In both of these the lens from the model in subsection 4.2.1 with

circ_radius = 50µm was used.

4.3.1 Two lens Model

In order to better understand arbitrary hBN shapes placed inside plane parallel Fabry-

Pérot cavities a key first stepping stone would be to investigate the interference of two hBN

lenses.

Figure 4.16. The hBN lenses highlighted in blue are each vertically displaced 5µm from
the center

The two hBN lenses are identically defined to the lens in section 4.2.1 with circ_radius =
50µm and d_lens = 50nm. The two lenses were located at the vertical distances (−5µm, 5µm)
with respect to the center of the cavity. Figure 4.16 illustrates this geometry.

Through analysing the transmission spectrum it was founds that the peak of T = 0.932 oc-

curred at 1000.291nm. From this data the Full Width Half Maximum FWHM = 0.00228nm
and Q-factor could be calculated.

Q2 lens = 1000.291nm
0.00228nm = 438172 ≈ 438000
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The Q-factor is again very similar to the one in the original model in subsection 4.2.1

reinforcing the point that this quantity does not seem to depend significantly on the hBN

lenses. Now considering the electric field distribution at the resonance frequency.

Figure 4.17. Electric field distribution across cavity in two lens model at the resonance
frequency

In Figure 4.17 it can be seen that largest electric field norms can be found in front of the

lenses. A more nuanced analysis of the plot shows that the peak electric field norm has

decreased with respect to the distribution of one hBN lens in Figure 4.6. Moreover, the

electric field norm in front of the lenses in the vertical direction falls off much less on the

side closer to the other lens. There is some positive interference between the two cavities

in the center of the cavity. In order to better analyse the interference of the two lenses in

the transverse plane a vertical line cut was taken at the first of the six longitudinal peaks.

This cut is depicted in Figure 4.18.

The vertical line cut in Figure 4.18 shows that the electric field in the transverse plane

is concentrated in front of the two lenses. However both peaks are smaller compared

to the similar plot in 4.7, which could be result of the their different location in the lens

as opposed to the model in section 4.2.1. However, it is quite likely that there is some

negative interference happening between the two lenses. Particularly interesting is that in

Figure 4.18 it can be seen that the electric field norm falls of much less quickly from the

lenses in the direction of the center. This can be explained by some positive interference of

the two lenses in the center region. Another feature of this plot are the three fluctuations of

the electric field norm around the center of the cavity. It would be interesting to investigate

whether the fluctuations get amplified or reduced when the distance between the lenses is
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Figure 4.18. Vertical line cut of the electric field distribution squared of the two lens model

altered. A detailed study to analyse this further would consist of varying the length in small

increments to see how the interference changes.

4.3.2 Four lens Model

The idea behind the four lens model was to place the lenses very close to each in order

to observe the interference. For this the original model in subsection 4.2.1 was used in

which four identical copies of the circ_radius = 50µm lens were made. The lenses were

arranged as shown in Figure 4.19.

The separation of 4.4µm was chosen so that the overlap between lenses was fairly small.

The four lenses were located at the vertical distances (−6.6µm,−2.2µm, 2.2µm, 6.6µm)
with respect to the center of the cavity.

Again the transmission spectrum around the reference wavelength was examined to find a

transmission peak of T = 0.92 was located at 1000.581nm. From this data the Full Width

Half Maximum FWHM = 0.00671nm and the Q-factor could also be calculated.

Q4 lens = 1000.581nm
0.00671nm = 149078 ≈ 149 000
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Figure 4.19. The four identical lenses were placed inside the cavity at a separation of
4.4µm

This is rather surprising as the Q-factor in the four lens model at the fundamental resonance

peak is the first one that is significantly different from all the other models. The ’wall’ of hBN

created by the slightly overlapping four lenses appears let photons escape much more

easily.

The electric field distribution of the four lens model at resonance frequency is given by

Figure 4.20.

This distribution looks a little bit similar to what could be seen in the one lens model in

Figure 4.6. The peak electric field amplitude is smaller by about 60V/m. Especially the

sinusoidal nature of the longitudinal distribution is shared by both plots. A key difference

is that the area where the electric field norm is concentrated is much more spread out that

in the one lens model. Another similarity can be drawn to the two lens model in Figure

4.17 with respect to the positive interference in the center. Interestingly there appears

to be negative interference in front of the two lenses not adjacent to the center. This is in

contrast to the electric field distribution seen with two lenses in 4.17, where the electric field

was concentrated in front of both lenses. It is quite likely that the separation of the lenses

plays a key role in this process. Investigating the conditions under which the electric field

57



4 Results

Figure 4.20. Electric field distribution of the four lens model at the resonance frequency

concentrates in front of a given lens in a multi-lens system is definitely worth investigating

further. The dependence of this on the number of lenses would also be an intriguing study.

A good first step in such an analysis could be two build a model with six lenses and see

how the electric field distribution changes.
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This project consisted of building numerical simulations of hBN lens zero-dimensional

Fabry-Pérot cavities in COMSOL Multiphysics©. It was shown that this software can be

used to replicate existing models of plane-parallel Fabry-Pérot cavities such as the TMM

python library. The simulations were also able to show the existence of the fundamental

Gaussian mode through the introduction of an hBN lens, which was measured experi-

mentally. As the field of introducing freeform hBN structures into Fabry-Pérot cavities is

relatively new not a lot of experimental or theoretical research was available to support the

validity of the other models used in this project. The simulations build over the course of this

project should serve as a stepping stone for research in this field. A number of interesting

features of hBN lenses inside Fabry-Pérot cavities could be identified. Smaller transmis-

sion peaks showed some periodic nature in the transverse confinement. The analysis done

in this project showed some interesting results, with regards the electric field distribution

inside the cavity and its dependence on the curvature on the lens. The data suggested

that more curved lenses lead to resonance peaks at higher wavelengths. Moreover, the

curvature of the lens also impacted the peak electric field distributions. Introducing multiple

lenses to the system yielded some intriguing findings about the interference between the

lenses. Especially the oscillatory nature of the electric field distribution near the center of

the cavity is worth investigating further. Moreover, through investigating a model with four

hBn lenses it could be seen that the electric field only concentrates on some of them.

A main limitation of the numerical tools used in this analysis was the frequency sweep

done in the COMSOL Multiphysics© software. In this analysis it is quite likely that a few

interesting features of the models were missed by chance because the frequency sweep

missed them. Examples of this likely include higher order transverse Gaussian modes and

other transmission peaks of similar height as the fundamental mode. Future investigations

could improve on this through increasing the computational scope of the simulations.

The models developed over the course of this project are meant as a starting ground for

further numerical analysis of these types of systems. This work barely scratches the sur-

face of the physics to be done with hBN lens zero-dimensional Fabry-Pérot cavities. A

number of interesting questions are open after this analysis, such as the dependence of

the peak electric field norm on the curvature, the higher order Gaussian modes and the
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interference mechanism of multiple lenses inside the cavity. Throughout the entire project

the absorption of all materials was assumed negligible. Future models could include a

nonzero absorption coefficient in order to describe the physical situation more accurately.

Newer simulations may also be concerned with investigating the dependence of the elec-

tric field distribution on the separation of the DBR mirrors, which would give some more

insight into the longitudinal confinement of the system. This is difficult to do with the mod-

els developed in this project as the entire model needs to be recomputed if the geometry

is changed. Moreover, newer models developed within COMSOL physics could be con-

cerned with implementing the geometries discussed in this project in three dimensional

models. This way higher order Gaussian modes might become visible as well.
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Appendices

A Appendix: Python code

Below is the python code used to model the planar Fabry-Pérot cavities with the TMM li-

brary. This code served as the tool for verification of the early models in this project. This

code was greatly inspired by a code written for the Optical Properties of Semiconductors

class at ETH Zurich in the Autumn Semester of 2021.

1 import numpy as np

2 import m a t p l o t l i b . pyp lo t as p l t

3 %m a t p l o t l i b notebook

4 #%m a t p l o t l i b i n l i n e

5 from sc ipy . i n t e r p o l a t e import i n te rp1d

6 import tmm

7

8 def gen_dbr ( n1 , n2 , wl , pa i rs , odd=False ) :

9 #Create p i l e o f lambda /4 laye rs o f r e f r a c t i v e i nd i ces n1 and n2

10 n , d = [ ] , [ ]

11 for i in range ( pa i r s ) :

12 n . extend ( ( n1 , n2 ) )

13 d . extend ( ( wl / 4 / n1 , wl / 4 / n2 ) )

14 i f odd :

15 n . append ( n1 )

16 d . append ( wl / 4 / n1 )

17 return n , d

18

19 n_SiO2 = 1.4570

20 n_Ta2O5 = 2.1205

21 n_a i r = 1

22 wavelength = 1000

23 d_mir rors = 3000

24 stack_n , stack_d = gen_dbr ( n_SiO2 , n_Ta2O5 , wavelength ,
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25 15 , odd=False )

26

27 # Layer th icknesses (nm) :

28 d = [ np . i n f , * stack_d , d_mirrors , * stack_d [ : : − 1 ] , np . i n f ]

29 # Layer r e f r a c t i v e i nd i ces :

30 n = [ n_ai r , * stack_n , n_ai r , * stack_n [ : : − 1 ] , n_a i r ]

31 the tas = np . l i nspace (0 , np . p i / 2 , 15001)

32 Rs = np . zeros ( the tas . shape )

33 Rp = np . zeros ( the tas . shape )

34 Ts = np . zeros ( the tas . shape )

35 Tp = np . zeros ( the tas . shape )

36 for i , t he ta in enumerate ( the tas ) :

37 s = tmm. coh_tmm ( ’ s ’ , n , d , theta , wavelength )

38 Rs [ i ] = s [ ’R ’ ]

39 Ts [ i ] = s [ ’T ’ ]

40 p = tmm. coh_tmm ( ’ p ’ , n , d , theta , wavelength )

41 Rp [ i ] = p [ ’R ’ ]

42 Tp [ i ] = p [ ’T ’ ]

43

44 # Assuming no d ispe rs ion f o r s i m p l i c i t y . . .

45 the ta = 0

46 wavelengths = np . l i nspace (800 , 1150 , 15001)

47 Rs_wl = np . zeros ( wavelengths . shape )

48 Rp_wl = np . zeros ( wavelengths . shape )

49 Ts_wl = np . zeros ( wavelengths . shape )

50 Tp_wl = np . zeros ( wavelengths . shape )

51

52 for i , wl in enumerate ( wavelengths ) :

53 s = tmm. coh_tmm ( ’ s ’ , n , d , theta , wl )

54 Rs_wl [ i ] = s [ ’R ’ ]

55 Ts_wl [ i ] = s [ ’T ’ ]

56 p = tmm. coh_tmm ( ’ p ’ , n , d , theta , wl )

57 Rp_wl [ i ] = p [ ’R ’ ]

58 Tp_wl [ i ] = s [ ’T ’ ]

59 s = tmm. coh_tmm ( ’ s ’ , n , d , theta , wavelength )

60

61

62 f , ax = p l t . subp lo ts (1 , 1 , f i g s i z e =(6 , 4 ) )

63 ax . se t_x labe l ( r ’ Wavelength (nm) ’ )

64 ax . se t_x l im ( wavelengths . min ( ) , wavelengths .max ( ) )
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65 ax . p l o t ( wavelengths , Ts_wl , l a b e l = r ’ $T_s$ ’ )

66 ax . p l o t ( wavelengths , Tp_wl , l a b e l = r ’ $T_p$ ’ , l s = ’− ’ )

67 ax . legend ( )

68 ax . s e t _ t i t l e ( ’DBR Fabry Perot Cav i ty Transmission ’ )

69 f . t i g h t _ l a y o u t ( )

70

71

72

73 # impor t t e x t f i l e and conver t i t to s t r i n g

74 l i n e s = [ ]

75 wi th open ( ’ 30_12_planeW_plot_trans_peak . t x t ’ ) as f :

76 l i n e s = f . read l i nes ( )

77

78 #create numpy ar ray out o f i t

79 temp = np . ar ray ( l i n e s )

80

81 # b u i l d new ar ray to work w i th

82 temp2 = temp

83 for i in range ( 8 ) :

84 temp2 = np . de le te ( temp2 , 0)

85

86 #group the numbers toge ther i n new ar ray

87 t3 = [ ]

88 t3 . append ( " " )

89 numcount = 0

90 for j in temp2 :

91 t2 = j

92 for i in t2 :

93 i f ( i != ’ ’ and i != " \ n " ) :

94 t3 [ numcount ] += i

95 i f ( i == ’ ’ and i != " \ n " ) :

96 t3 . append ( " " )

97

98 numcount+=1

99 t3 . append ( " " )

100 numcount+=1

101

102 #conver t a r ray o f s t r i n g s to ar ray o f f l o a t s

103 t4 = [ ]

104 for index , s t r i n g in enumerate ( t3 ) :
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105 i f ( s t r i n g != ’ ’ ) :

106 t4 . append ( f l o a t ( t3 [ index ] ) )

107

108 # s p l i t a r ray o f f l o a t s i n t o two arrays , one f o r wavelengths

109 #the other f o r the corresponding T− c o e f f i c i e n t s

110 wavelengths2 = [ ]

111 t rans = [ ]

112 wave = True

113 for i in t4 :

114 i f ( wave ) :

115 wavelengths2 . append ( i )

116 else :

117 t rans . append ( i )

118 wave = not wave

119

120 # p l o t r e s u l t on top o f t h e o r e t i c a l c a l c u l a t i o n s

121 f , ax = p l t . subp lo ts ( )

122

123 ax . se t_x labe l ( r ’ Wavelength (nm) ’ )

124 ax . se t_x l im ( wavelengths . min ( ) , wavelengths .max ( ) )

125 ax . p l o t ( wavelengths , Ts_wl , l a b e l = r ’ $T_s$ ’ )

126 ax . p l o t ( wavelengths , Tp_wl , l a b e l = r ’ $T_p$ ’ , l s = ’− ’ )

127 ax . p l o t ( wavelengths2 , t rans , l a b e l = r ’COMSOL ’ )

128 ax . legend ( )

129 ax . s e t _ t i t l e ( ’ Fabry Perot c a v i t y w i th i n c i d e n t plane Wave ’ )

130 p l t . t i g h t _ l a y o u t ( pad=2)
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